Αρχείο ετικέτας ΟΛΟΚΛΗΡΩΣΗ ΑΡΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

164 f(x) = -f'(x)(f(x) + x).

164 f(x) = -f'(x)(f(x) + x).

Rendered by QuickLaTeX.com

Λύση

Συνέχεια ανάγνωσης 164 f(x) = -f'(x)(f(x) + x).

82 ΠΡΟΣΗΜΟ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

82 ΠΡΟΣΗΜΟ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

Rendered by QuickLaTeX.com

Λύση
Συνέχεια ανάγνωσης 82 ΠΡΟΣΗΜΟ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

Στα ολοκληρώματα ρητής ή άρρητηςσυνάρτησης όπου η μεταβλητή x εμφανίζεται μόνο ως x^{2} αρκετές φορές χρειάζεται να κάνουμε την τριγωνομετρική αντικατάσταση του ημιτόνου ή της εφαπτομένης αξιοποιόντας την ταυτότητα \hm^{2}x+ \syn^{2}x =1.

Τριγωνομετρική αντικατάσταση του ημιτόνου


Για υπολογίσουμε ένα ολοκλήρωμα της μορφής

    \[\int_{\kappa}^{\lambda} f\Big( x, \sqrt{\beta^{2} -\alpha^{2}x^{2}}\Big)\, dx.\]

Χρησιμοποιούμε την τριγωνομετρική αντικατάσταση του ημιτόνου δηλαδή:

    \[\text{Θέτουμε } \quad x = \dfrac{\beta}{\alpha}\cdot \hm u \quad \text{με} \quad u \in \big[ -\dfrac{\pi}{2}, \dfrac{\pi}{2}\big].\]


Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΡΙΖΕΣ ΔΙΑΦΟΡΕΤΙΚΗΣ ΤΑΞΗΣ ΜΕ ΙΔΙΟ ΥΠΟΡΡΙΖΟ

Για να υπολογίσουμε το ορισμένο ολοκλήρωμα μιας συνάρτησης όπου ο τύπος της περιέχει ρίζες διαφορετικής τάξης οι οποίες όμως έχουν το ίδιο υπόρριζο, δηλαδή ολοκλήρώματα της μορφής:

    \[\int_{\alpha}^{\beta}f\big( x, \sqrt[\nu]{kx+\lambda}, \sqrt[\mu]{kx+\lambda}\big)\,\, dx, \quad k\in \rr^{*}\]

εργαζόμαστε ως εξης:

  • Βρίσκουμε το Ελάχιστο κοινό πολλαπλάσιο των τάξεων των ριζών π.χ. EK\Pi(\nu, \mu)=\gamma.
  • Θέτουμε \sqrt[\gamma]{kx+\lambda} =u\Rightarrow kx+\lambda = u^{\gamma}.
  • Οπότε ( kx+\lambda)' \, dx  = ( u^{\gamma})' du \Rightarrow  k\cdot dx = \gamma u^{\gamma -1} du.
  • Γράφουμε τα ριζικά \sqrt[\nu]{kx+\lambda}, \sqrt[\mu]{kx+\lambda}, ως δυνάμεις του u και κάνουμε την αντικατάσταση.

  • Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΡΙΖΕΣ ΔΙΑΦΟΡΕΤΙΚΗΣ ΤΑΞΗΣ ΜΕ ΙΔΙΟ ΥΠΟΡΡΙΖΟ

    ΟΛΟΚΛΗΡΩΣΗ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

    Για την ολοκλήρωση άρρητης συναρτήσης, δηλαδή για ολοκληρώματα που περιέχουν ν-οστη ρίζα της μορφής:

        \[\int_{\alpha}^{\beta} f\Bigg(x,\sqrt[\nu]{g(x)}\Bigg) \,\, dx\]

    Χρησιμοποιούμε τη μέθοδο της αντικατάστασης θέτοντας:

        \[\sqrt[\nu]{g(x)} = u \Rightarrow g(x)=u^{\nu} \quad (1.)\]

    Οπότε έχουμε:

        \[g'(x)\, dx= \nu u^{\nu -1}\, du\]

    Η μέθοδος την αντικατάστασης εφαρμόσιμη και έχει αξία όταν είναι εφικτή η επίλυση της εξίσωσης (1.)
    ως προς x.

    Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΣΗ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ