Αρχείο ετικέτας ΣΗΜΕΙΟ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

ΔΥΟ ΣΗΜΕΙΑ ΟΡΙΖΟΥΝ ΕΥΘΕΙΑ


ΔΥΟ ΣΗΜΕΙΑ ΟΡΙΖΟΥΝ ΕΥΘΕΙΑ
Έστω (\epsilon) η ευθεία που διέρχεται από τα δύο σημεία Α(\mathrm{x}_{1}, \mathrm{y}_{1}) και Β(\mathrm{x}_{2}, \mathrm{y}_2).

  •  Αν \mathrm{x}_{1} \neq \mathrm{x}_{2}, τότε ο συντελεστής διεύθυνσης της (\epsilon) είναι:
    \lambda = \dfrac{\mathrm{y}_{2} - \mathrm{y}_{1}}{\mathrm{x}_{2} - \mathrm{x}_{1}}
    και η εξίσωσή της γίνεται:
    (\epsilon):\mathrm{y} - \mathrm{y}_{1} = \lambda (\mathrm{x} - \mathrm{x}_{1}) \Leftrightarrow \mathrm{y} - \mathrm{y}_{1} = \frac{\mathrm{y}_{2} - \mathrm{y}_{1}}{\mathrm{x}_{2} - \mathrm{x}_{1}} (\mathrm{x} - \mathrm{x}_{1})
  • Αν \mathrm{x}_{1} = \mathrm{x}_{2}, τότε δεν ορίζεται συντελεστής διεύθυνσης για την (\epsilon) και η εξίσωσή της είναι:
    (\epsilon):\mathrm{x} = \mathrm{x}_{1}
    Δηλαδή, η ευθεία (\epsilon):\mathrm{x} = \mathrm{x}_{1} είναι παράλληλη στον y',y.

Συνέχεια ανάγνωσης ΔΥΟ ΣΗΜΕΙΑ ΟΡΙΖΟΥΝ ΕΥΘΕΙΑ

ΣΥΜΜΕΤΡΙΚΟ ΣΗΜΕΙΟΥ ΩΣ ΠΡΟΣ ΕΥΘΕΙΑ

ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΓΝΩΣΤΟ ΣΗΜΕΙΟ

Ευθεία που διέρχεται από γνωστό σημείο και ικανοποιεί μια ιδιότητα

Όταν μια ευθεία (\epsilon) διέρχεται από γνωστό σημείο Α(\mathrm{x}_{0}, \mathrm{y}_{0}) και επιπλέον έχει μια ιδιότητα Ι, τότε για να βρούμε την εξίσωσή της, εργαζόμαστε ώς εξής:

  • Η ευθεία (\epsilon) έχει εξίσωση της μορφής:

        \[\mathrm{x} = \mathrm{x}_0 \quad \text{ή}\quad \mathrm{y} - \mathrm{y}_{0} = \lambda (\mathrm{x} - \mathrm{x}_{0}).\]

  • Εξετάζουμε αν η ευθεία με εξίσωση \mathrm{x} = \mathrm{x}_0 έχει την ιδιότητα Ι. Αν την έχει, τότε η \mathrm{x} = \mathrm{x}_0 είναι μια από τις ζητούμενες ευθείες.

Θεωρούμε ότι η ευθεία με εξίσωση \mathrm{y} - \mathrm{y}_{0} = \lambda (\mathrm{x} - \mathrm{x}_{0}) έχει την ιδιότητα Ι και βρίσκουμε (αν υπάρχουν) τις τιμές του \lambda και τις αντίστοιχες ευθείες.

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΓΝΩΣΤΟ ΣΗΜΕΙΟ

ΓΕΩΜΕΤΡΙΚΟ ΠΡΟΒΛΗΜΑ ΜΕ ΔΙΑΜΕΣΟ ΕΥΘΕΙΑ

Γεωμετρικό πρόβλημα με δεδομένη τη διάμεσο ευθεία

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΓΕΩΜΕΤΡΙΚΟ ΠΡΟΒΛΗΜΑ ΜΕ ΔΙΑΜΕΣΟ ΕΥΘΕΙΑ