Αρχείο ετικέτας ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ

ΣΗΜΕΙΟ ΠΟΥ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

ΣΗΜΕΙΟ ΠΟΥ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

Αν γνωρίζουμε ότι το σημείο Μ(\mathrm{x}_{1}, \mathrm{y}_{1}) ανήκει στην ευθεία (\epsilon): \mathrm{y} = \lambda \mathrm{x} + \beta, τότε οι συντεταγμένες του επαληθεύουν την εξίσωσή της. Δηλαδή ισχύει ότι:

    \[\mathrm{y}_{1} = \lambda \mathrm{x}_{1} + \beta.\]

Άρα το σημείο Μ είναι της μορφής:

    \[M\big(\mathrm{x}_{1}\, , \,\lambda \mathrm{x}_{1} + \beta\big).\]


Συνέχεια ανάγνωσης ΣΗΜΕΙΟ ΠΟΥ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

ΕΥΘΕΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΤΡΙΓΩΝΟ ΜΕ ΤΟΥΣ ΑΞΟΝΕΣ

Ευθεία με γνωστό συντελεστή διεύθυνσης που ικανοποιεί μια ιδιότητα.
Όταν η ευθεία (\epsilon) έχει γνωστό συντελεστή διεύθυνσης \lambda και ικανοποιεί μια ιδιότητα Ι,(π.χ ευθεια που σχηματιζει τριγωνο με τους αξονες) τότε για να βρούμε την εξίσωσή της, γράφουμε την ευθεία (\epsilon) στη μορφή:

    \[(\epsilon):\mathrm{y} = \lambda \mathrm{x} + \beta.\]

‘Ωστε ο μοναδικός άγνωστος να είναι ο \beta, τον οποίο θα υπολογίσουμε θεωρώντας ότι η (\epsilon) ικανοποιεί την ιδιότητα Ι.

ΕΥΘΕΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΤΡΙΓΩΝΟ ΜΕ ΤΟΥΣ ΑΞΟΝΕΣ

 
Συνέχεια ανάγνωσης ΕΥΘΕΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΤΡΙΓΩΝΟ ΜΕ ΤΟΥΣ ΑΞΟΝΕΣ

ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΓΝΩΣΤΟ ΣΗΜΕΙΟ

Ευθεία που διέρχεται από γνωστό σημείο και ικανοποιεί μια ιδιότητα

Όταν μια ευθεία (\epsilon) διέρχεται από γνωστό σημείο Α(\mathrm{x}_{0}, \mathrm{y}_{0}) και επιπλέον έχει μια ιδιότητα Ι, τότε για να βρούμε την εξίσωσή της, εργαζόμαστε ώς εξής:

  • Η ευθεία (\epsilon) έχει εξίσωση της μορφής:

        \[\mathrm{x} = \mathrm{x}_0 \quad \text{ή}\quad \mathrm{y} - \mathrm{y}_{0} = \lambda (\mathrm{x} - \mathrm{x}_{0}).\]

  • Εξετάζουμε αν η ευθεία με εξίσωση \mathrm{x} = \mathrm{x}_0 έχει την ιδιότητα Ι. Αν την έχει, τότε η \mathrm{x} = \mathrm{x}_0 είναι μια από τις ζητούμενες ευθείες.

Θεωρούμε ότι η ευθεία με εξίσωση \mathrm{y} - \mathrm{y}_{0} = \lambda (\mathrm{x} - \mathrm{x}_{0}) έχει την ιδιότητα Ι και βρίσκουμε (αν υπάρχουν) τις τιμές του \lambda και τις αντίστοιχες ευθείες.

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΓΝΩΣΤΟ ΣΗΜΕΙΟ

ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΚΑΙ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΚΑΙ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΚΑΙ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΓΕΩΜΕΤΡΙΚΟ ΠΡΟΒΛΗΜΑ ΜΕ ΔΙΧΟΤΟΜΟ ΓΩΝΙΑΣ

Γεωμετρικό πρόβλημα με δεδομένη διχοτόμο γωνίας δυο ευθειών.

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΓΕΩΜΕΤΡΙΚΟ ΠΡΟΒΛΗΜΑ ΜΕ ΔΙΧΟΤΟΜΟ ΓΩΝΙΑΣ

ΓΕΩΜΕΤΡΙΚΟΣ ΤΟΠΟΣ ΠΑΡΑΜΕΤΡΙΚΩΝ ΣΗΜΕΙΩΝ

ΓΕΩΜΕΤΡΙΚΟΣ ΤΟΠΟΣ ΠΑΡΑΜΕΤΡΙΚΩΝ ΣΗΜΕΙΩΝ

    \[\boldsymbol{Μ(f(\lambda), g(\lambda))}\]

Έστω ότι έχουμε σημεία της μορφής Μ(f(\lambda), g(\lambda)), όπου f(\lambda) και g(\lambda) συναρτήσεις που έχουν μεταβλητή το \lambda. Για να βρούμε τον γεωμετρικό τόπο των σημείων Μ, εργαζόμαστε ως εξής:
Θέτουμε \mathrm{x} = f(\lambda) και \mathrm{y} = g(\lambda), οπότε είναι Μ(\mathrm{x}, \mathrm{y}), και προσπαθούμε να βρούμε μια ισότητα που να συνδέει τα \mathrm{x} και \mathrm{y} και δεν περιέχει το \lambda. Προσπαθούμε δηλαδή να κάνουμε την απαλοιφή του \lambda.

Συνέχεια ανάγνωσης ΓΕΩΜΕΤΡΙΚΟΣ ΤΟΠΟΣ ΠΑΡΑΜΕΤΡΙΚΩΝ ΣΗΜΕΙΩΝ

ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

Αναλυτική έκφραση εσωτερικού γινομένου

Αν \vec{α}=(\mathrm{x_1},\mathrm{y_1}) και \vec{\beta}=(\mathrm{x_2},\mathrm{y_2}) δύο διανύσματα του Καρτεσιανού επιπέδου, τότε:

    \[\vec{α} \cdot \vec{\beta}=\mathrm{x_1}\mathrm{x_2}+\mathrm{y_1}\mathrm{y_2}\]

Δηλαδή:
Το εσωτερικό γινόμενο δύο διανυσμάτων είναι ίσο με το άθροισμα των γινομένων των ομωνύμων συντεταγμένων τους.

Συνέχεια ανάγνωσης ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

ΙΣΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΚΑΙ ΜΕΤΡΟΥ ΔΙΑΝΥΣΜΑΤΩΝ ΠΟΥ ΔΕΝ ΙΣΧΥΟΥΝ ΠΑΝΤΑ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ

Κάθετα διανύσματα – Ορισμός και ιδιότητες εσωτερικού γινομένου}

Σε ασκήσεις που υπάρχει ως δεδομένο ή ως ζητούμενο ότι δύο μή μηδενικά διανύσματα είναι κάθετα. χρησιμοποιούμε την ισοδυναμία:

    \[\vec{α} \perp \vec{\beta} \Leftrightarrow \vec{α} \cdot \vec{\beta} = 0.\]

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ