Αρχείο ετικέτας ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΕΤΡΟ ΔΙΑΝΥΣΜΑΤΟΣ

ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ
Η απόσταση των σημείων A(\mathrm{x}_1,\mathrm{y}_1) και B(\mathrm{x}_2,\mathrm{y}_2) του Καρτεσιανού επιπέδου είναι ίση με:

    \[AB=\sqrt{{(\mathrm{x}_2-\mathrm{x}_1)}^2+{(\mathrm{y}_2-\mathrm{y}_1)}^2}\]

Απόδειξη

Η απόσταση δύο σημείων AB είνα ίση με το μέτρο του διανύσματος που ορίζουν.

Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

ΟΡΙΖΟΥΣΑ ΔΙΑΝΥΣΜΑΤΩΝ – ΣΥΝΘΗΚΗ ΠΑΡΑΛΛΗΛΙΑΣ

ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ


Για να εξετάσουμε τρια σημεία οτι είναι συνευθειακά θα πρεπει να οριζουν δυο διανύσματα παράλληλα οπότε η ορίζουσα των συντεταγμένων τους να ειναι μηδεν

Συνέχεια ανάγνωσης ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ

ΓΩΝΙΑ ΔΙΑΝΥΣΜΑΤΟΣ ΜΕ ΤΟΝ ΑΞΟΝΑ ΤΩΝ ΤΕΤΜΗΜΕΝΩΝ

ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΔΙΑΝΥΣΜΑΤΟΣ (ΑΣΚΗΣΕΙΣ)

  • Έστω \vec{\nu}=(\mathrm{x},\mathrm{y}) ένα διάνυσμα με \mathrm{x}, \mathrm{y} \neq 0. Για να βρούμε τη γωνία \omega που σχηματίζει το \vec{\nu} με τον άξονα x'x, εργαζόμαστε ως εξής:
  • Βρίσκουμε την \epsilon\phi\omega=\dfrac{y}{x}.
    Εντοπίζουμε σε ποιο τεταρτημόριο βρίσκεται η τελική πλευρά της \omega.

      αν \mathrm{x}>0 και \mathrm{y}>0, τότε 0 < \omega < \frac{\pi}{2}
      αν \mathrm{x}<0 και \mathrm{y}>0, τότε \frac{\pi}{2} < \omega < \pi
      αν \mathrm{x}<0 και \mathrm{y}<0, τότε \pi < \omega < \frac{3\pi}{2}
      αν \mathrm{x}>0 και \mathrm{y}<0, τότε \frac{3\pi}{2} < \omega < 2\pi
  • `Ενα διάνυσμα της μορφής \vec{\nu}=(\mathrm{x},0) είναι παράλληλο στον άξονα x'x και σχηματίζει με αυτόν γωνία:
    • 0, αν \mathrm{x}>0
      \pi, αν \mathrm{x}<0
  • `Ενα διάνυσμα της μορφής \vec{\nu}=(0,\mathrm{y}) είναι κάθετο στον άξονα x'x και σχηματίζει με αυτόν γωνία:
    • \frac{\pi}{2}, αν \mathrm{y}>0
      \frac{3\pi}{2}, αν \mathrm{y}<0

    Συνέχεια ανάγνωσης ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΔΙΑΝΥΣΜΑΤΟΣ (ΑΣΚΗΣΕΙΣ)

    Επίλυση γεωμετρικών προβλημάτων με τη βοήθεια συντεταγμένων

    Ορισμένα προβλήματα γεωμετρίας μπορούν να λυθούν πιο εύκολα με τη βοήθεια των συντεταγμένων. Εργαζόμαστε ως εξής:

  • Τοποθετούμε το σχήμα σε κατάλληλο σύστημα αξόνων, ώστε να προκύψουν όσο το δυαντόν περισσότερα σημεία με τεταγμένες ή τετμημένες μηδέν και όσο το δυνατόν λιγότερα σημεία με άγνωστες συντεταγμένες.
  • Βρίσκουμε τις συντεταγμένες των κορυφών του σχήματος.
  • Εκφράζουμε τα διανυσματικά δεδομένα με τη βοήθεια συντεταγμένων και το πρόβλημα γίνεται ((αλγεβρικό)).

  • Συνέχεια ανάγνωσης Επίλυση γεωμετρικών προβλημάτων με τη βοήθεια συντεταγμένων

    ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΜΕΣΟΥ

    Οι περισσότερες ασκήσεις με διανυσματικές σχέσεις μπορούν να λυθούν με τη μέθοδο των διανυσματικών ακτίνων.

  • Όταν θέλω πρόσθεση έχω το ίδιο μεσαίο σημείο

        \[\overrightarrow{AB} = \overrightarrow{AO} +\overrightarrow{OB}\]

  • Όταν θέλω αφαίρεση έχω το ίδιο αρχικό σημείο

        \[\overrightarrow{AB} = \overrightarrow{OA} -\overrightarrow{OB}\]

    Δηλαδή όταν ένα διάνυσμα πρέπει να αναλυθεί:

    Συνέχεια ανάγνωσης ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΜΕΣΟΥ

  • ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

        \[\Big| |\overrightarrow{\gra}|-| \overrightarrow{\grb} |\Big| \leq |\overrightarrow{\gra}+\overrightarrow{\grb} | \leq | \overrightarrow{\gra} |+ |\overrightarrow{\grb}|\]

    Όταν έχουμε να συνδυάσουμε σε μια άσκηση ανισοτικές σχέσεις με διανύσματα και παραλληλία, με ομόρροπα και αντίρροπα διανύσματα, χρησιμοποιώ τις παρακάτω ειδικές περιπτώσεις:

        \[\bullet \quad \Big||\overrightarrow{\gra}|-| \overrightarrow{\grb} |\Big| = |\overrightarrow{\gra}+\overrightarrow{\grb} | \text{ αν-ν } \ \overrightarrow{\gra} \nearrow \swarrow \overrightarrow{\grb}\]

        \[\bullet \quad |\overrightarrow{\gra}+\overrightarrow{\grb} | = | \overrightarrow{\gra} |+ |\overrightarrow{\grb}| \ \text{ αν-ν } \ \overrightarrow{\gra} \nearrow \nearrow \overrightarrow{\grb}\]

    Συνέχεια ανάγνωσης ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

    ΙΣΟΤΗΤΑ ΔΙΑΝΥΣΜΑΤΩΝ

    Παράδειγμα.1.
    Δίνονται 3 μη συνευθειακά σημεία Α, Β, Γ και τα διανύσματα

        \[\overrightarrow{\Gamma\Delta}=\overrightarrow{BA} \ \text{και} \ \overrightarrow{B \Epsilon}=\overrightarrow{A\Gamma},\]

    να αποδείξετε ότι το \Gamma είναι μέσο του \Delta\Epsilon.
    Συνέχεια ανάγνωσης ΙΣΟΤΗΤΑ ΔΙΑΝΥΣΜΑΤΩΝ