Αρχείο ετικέτας ΔΙΑΝΥΣΜΑΤΑ

ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΟΡΙΣΜΟΣ

Συνημίτονο γωνίας δύο διανυσμάτων

Θεωρούμε δύο διανύσματα \vec{α}, \vec{\beta} \neq \vec{0} του επιπέδου
και έστω \theta = (\widehat{\vec{α}, \vec{\beta}}).
Το συνημτονο της γωνίας \theta που σχηματιζουν τα διανύσματα \vec{α}, \vec{\beta} δίνεται από τον τύπο:

    \[\sigma \upsilon \nu \theta = \frac{\vec{α} \cdot \vec{\beta}}{\lvert \vec{α} \rvert \lvert \vec{\beta} \rvert}.\]


Συνέχεια ανάγνωσης ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΟΡΙΣΜΟΣ

ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΓΝΩΣΤΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Συνημίτονο γωνίας δύο διανυσμάτων και συντεταγμένες διανυσμάτων

Έστω \vec{α}=(\mathrm{x_1}, \mathrm{y_1}) και \vec{\beta}=(\mathrm{x_2}, \mathrm{y_2}) δύο μη μηδενικά διανύσματα τότε για τη γωνία \theta που σχηματιζουν ισχύει ότι:

    \[\sigma \upsilon \nu \theta = \frac{\mathrm{x}_{1}\mathrm{x}_{2}+\mathrm{y}_{1}\mathrm{y}_{2}}{\sqrt{\mathrm{x}^{2}_{1}+\mathrm{y}^{2}_{1}} \cdot \sqrt{\mathrm{x}^{2}_{2}+\mathrm{y}^{2}_{2}}}\]

Συνέχεια ανάγνωσης ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΓΝΩΣΤΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

ΙΣΑ ΔΙΑΝΥΣΜΑΤΑ

Από τον ορισμό των συντεταγμένων ενός διανύσματος προκύπτει ότι:
“Δύο διανύσματα είναι ίσα, αν και μόνο αν οι αντίστοιχες συντεταγμένες τους είναι ίσες.”

Συνέχεια ανάγνωσης ΙΣΑ ΔΙΑΝΥΣΜΑΤΑ

ΔΙΑΝΥΣΜΑΤΑ ΠΑΡΑΛΛΗΛΑ ΣΤΟΥΣ ΑΞΟΝΕΣ

Διανύσματα παράλληλα στους άξονες

Έστω ένα διάνυσμα

    \[\vec{\alpha} =(\mathrm{x,y}).\]

  • Το \vec{\alpha} είναι παράλληλο στον άξονα x'x, αν και μόνο αν η τεταγμένη του είναι ίση με 0. Δηλαδή:

        \[\vec{\alpha} \parallel x'x \Leftrightarrow y=0\]

Διάνυσμα {\vec{\alpha} παράλληλο στον x'x

ΓΡΑΜΜΙΚΟΣ ΣΥΝΔΥΑΣΜΟΣ ΔΙΑΝΥΣΜΑΤΩΝ

Συντεταγμένες γραμμικού συνδυασμού διανυσμάτων

Αν \vec{\alpha}=(\mathrm{x}_1,\mathrm{y}_1) και \vec{\beta}=(\mathrm{x}_2,\mathrm{y}_2), τότε ισχύουν:

  • \vec{\alpha}+\vec{\beta}=(\mathrm{x}_1,\mathrm{y}_1)+(\mathrm{x}_2,\mathrm{y}_2)=(\mathrm{x}_1+\mathrm{x}_2,\mathrm{y}_1+\mathrm{y}_2)
  • \lambda \cdot \vec{\alpha}=\lambda \cdot (\mathrm{x}_1,\mathrm{y}_1)=(\lambda \cdot \mathrm{x}_1, \lambda \cdot \mathrm{y_1}),\lambda \in \mathbb{R}
  • \lambda \cdot \vec{\alpha}+\mu \cdot \vec{\beta}=(\lambda \cdot \mathrm{x}_1 + \mu \cdot \mathrm{x}_2, \lambda \cdot \mathrm{y_1}+\mu \cdot \mathrm{y_2}), \lambda, \mu \in \mathbb{R}

Απόδειξη
Για τις συντεταγμένες του τυχαίου διανύσματος \vec{\alpha} ισχύουν:

Συνέχεια ανάγνωσης ΓΡΑΜΜΙΚΟΣ ΣΥΝΔΥΑΣΜΟΣ ΔΙΑΝΥΣΜΑΤΩΝ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΤΡΙΓΩΝΟΥ

  • Είναι γνωστό ότι σε κάθε τρίγωνο \overset{\triangle}{ΑB\Gamma} διάμεσος ονομάζουμε το ευθύγραμμο τμήμα το οποίο ενώνει μία κορυφή του τριγώνου με το μέσο της απέναντι πλευράς.
  • Είναι προφανές ότι σε κάθε τρίγωνο υπάρχουν ακριβώς τρεις διάμεσους: μία από κάθε κορυφή προς την αντίθετη πλευρά

.

Συνέχεια ανάγνωσης ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΤΡΙΓΩΝΟΥ

ΜΕΤΡΟ ΔΙΑΝΥΣΜΑΤΟΣ

ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ
Η απόσταση των σημείων A(\mathrm{x}_1,\mathrm{y}_1) και B(\mathrm{x}_2,\mathrm{y}_2) του Καρτεσιανού επιπέδου είναι ίση με:

    \[AB=\sqrt{{(\mathrm{x}_2-\mathrm{x}_1)}^2+{(\mathrm{y}_2-\mathrm{y}_1)}^2}\]

Απόδειξη

Η απόσταση δύο σημείων AB είνα ίση με το μέτρο του διανύσματος που ορίζουν.

Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

ΟΡΙΖΟΥΣΑ ΔΙΑΝΥΣΜΑΤΩΝ – ΣΥΝΘΗΚΗ ΠΑΡΑΛΛΗΛΙΑΣ

ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ


Για να εξετάσουμε τρια σημεία οτι είναι συνευθειακά θα πρεπει να οριζουν δυο διανύσματα παράλληλα οπότε η ορίζουσα των συντεταγμένων τους να ειναι μηδεν

Συνέχεια ανάγνωσης ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ