Αρχείο ετικέτας ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

Αναλυτική έκφραση εσωτερικού γινομένου

Αν \vec{α}=(\mathrm{x_1},\mathrm{y_1}) και \vec{\beta}=(\mathrm{x_2},\mathrm{y_2}) δύο διανύσματα του Καρτεσιανού επιπέδου, τότε:

    \[\vec{α} \cdot \vec{\beta}=\mathrm{x_1}\mathrm{x_2}+\mathrm{y_1}\mathrm{y_2}\]

Δηλαδή:
Το εσωτερικό γινόμενο δύο διανυσμάτων είναι ίσο με το άθροισμα των γινομένων των ομωνύμων συντεταγμένων τους.

Συνέχεια ανάγνωσης ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΜΕ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Κάθετα διανύσματα – Αναλυτική έκφραση εσωτερικού γινομένου

Όταν δύο μή μηδενικά διανύσματα είναι κάθετα μεταξύ τους τότε το εσωτερικό τους γινόμενο είναι ίσο με μηδέν.

    \[\text{Αν:}\quad \vec{\alpha}=(x_{1}\, , \, y_{1}) \quad \text{και} \quad  \vec{\beta}=(x_{2}\, , \, y_{2})\]

    \[\text{με}\quad \vec{\alpha} {\Large{\bot} \vec{\beta}\]

    \[\text{Τότε:} \quad \vec{\alpha} \cdot \vec{\beta} =0 \quad \text{οπότε} \quad x_{1}\cdot x_{2}+y_{1}\cdot y_{2} =0.\]

Συνέχεια ανάγνωσης ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΜΕ ΣΥΝΤΕΤΑΓΜΕΝΕΣ