Αρχείο κατηγορίας Β Λυκείου

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

    1. Έστω οξεία γωνία ω. Πως ορίζεται το ημίτονο, συνημίτονο, η εφαπτόμενη και η συνεφαπτόμενη της γωνίας ω?
      ΑΠΑΝΤΗΣΗ
      Έστω γωνία ω. Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

  1.  Να αποδείξετε ότι \hm^2\grv+\syn^2\grv=1.
    Αν M(x, y) είναι το σημείο στο οποίο η τελική πλευρά της γωνίας \grv τέμνει τον τριγωνομετρικό κύκλο, τότε θα είναι:

    Η τετμημένη x= ημ ω και η τεταγμένη y =συν ω του σημείου M(x,y)

    Συνέχεια ανάγνωσης ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

ΑΝΑΓΩΓΗ ΣΤΟ ΠΡΩΤΟ ΤΕΤΑΡΤΗΜΟΡΙΟ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Τύποι επίλυσης των τριγωνομετρικών εξισώσεων, ημιτόνου, συνημιτόνου, εφαπτομένης και συνεφαπτομένης.

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ

Ερωτήσεις και απαντήσεις Θεωρίας τριγωνομετρικών αριθμών αθροίσματος και διαφοράς και αποδείξεις των τριγωνομετρικών τύπων.
Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ

ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

    \[\Big| |\overrightarrow{\gra}|-| \overrightarrow{\grb} |\Big| \leq |\overrightarrow{\gra}+\overrightarrow{\grb} | \leq | \overrightarrow{\gra} |+ |\overrightarrow{\grb}|\]

Όταν έχουμε να συνδυάσουμε σε μια άσκηση ανισοτικές σχέσεις με διανύσματα και παραλληλία, με ομόρροπα και αντίρροπα διανύσματα, χρησιμοποιώ τις παρακάτω ειδικές περιπτώσεις:

    \[\bullet \quad \Big||\overrightarrow{\gra}|-| \overrightarrow{\grb} |\Big| = |\overrightarrow{\gra}+\overrightarrow{\grb} | \text{ αν-ν } \ \overrightarrow{\gra} \nearrow \swarrow \overrightarrow{\grb}\]

    \[\bullet \quad |\overrightarrow{\gra}+\overrightarrow{\grb} | = | \overrightarrow{\gra} |+ |\overrightarrow{\grb}| \ \text{ αν-ν } \ \overrightarrow{\gra} \nearrow \nearrow \overrightarrow{\grb}\]

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

ΙΣΟΤΗΤΑ ΔΙΑΝΥΣΜΑΤΩΝ

Παράδειγμα.1.
Δίνονται 3 μη συνευθειακά σημεία Α, Β, Γ και τα διανύσματα

    \[\overrightarrow{\Gamma\Delta}=\overrightarrow{BA} \ \text{και} \ \overrightarrow{B \Epsilon}=\overrightarrow{A\Gamma},\]

να αποδείξετε ότι το \Gamma είναι μέσο του \Delta\Epsilon.
Συνέχεια ανάγνωσης ΙΣΟΤΗΤΑ ΔΙΑΝΥΣΜΑΤΩΝ

ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται άρτια όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας άρτιας συνάρτησης είναι συμμετρική ως προς τον άξονα y'y.

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται περιττή όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=-f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας περιττής συνάρτησης είναι συμμετρική ως προς την αρχή των αξόνων.
    Συνέχεια ανάγνωσης ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ