Όλα τα άρθρα του/της Νίκος Διακόπουλος

https://www.linkedin.com/profile/view?id=AAMAAAjBCJMB6EeshfR3d4vb9v_yKk9oDICTDoo&authType=&authToken=&trk=mp-allpost-aut-name

ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ ΩΣ ΠΡΟΣ X KAI Y

ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ ΩΣ ΠΡΟΣ X KAI Y

Εξισώσεις της μορφής

    \[\boldsymbol{A\mathrm{x}^{2} + B\mathrm{y}^{2} + \Gamma \mathrm{x}\mathrm{y} + \Delta\mathrm{x} + E\mathrm{y} + Z = 0}\]


Για να αποδείξουμε ότι μια εξίσωση της μορφής:

    \[A\mathrm{x}^{2} + B\mathrm{y}^{2} + \Gamma \mathrm{x}\mathrm{y} + \Delta\mathrm{x} + E\mathrm{y} + Z = 0\]

παριστάνει δύο ευθείες, εργαζόμαστε ως εξής:
Θεωρούμε ότι η εξίσωση είναι τριώνυμο ως προς \mathrm{x} (ή ως προς \mathrm{y},) δηλαδή:

    \[A\mathrm{x}^{2} + (\Gamma \mathrm{y} + \Delta)\mathrm{x}+ B\mathrm{y}^{2} + E\mathrm{y} + Z = 0\]

Λύνουμε την παραπάνω εξίσωση και βρίσκουμε δύο σχέσεις ανάμεσα στα \mathrm{x} και \mathrm{y}, οι οποίες είναι οι εξισώσεις των ζητούμενων ευθειών

Συνέχεια ανάγνωσης ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ ΩΣ ΠΡΟΣ X KAI Y

ΑΣΚΗΣΗ ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ 51.59

ΑΣΚΗΣΗ ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ 51.59

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΑΣΚΗΣΗ ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ 51.59

ΑΣΚΗΣΗ ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ 65.61

ΚΛΙΣΗ – ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ

ΚΛΙΣΗ –  ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ

Γωνία που σχηματίζει ευθεία με τον άξονα  \boldsymbol{x'x}

Σε ένα σύστημα συντεταγμένων Oxy θεωρούμε μια ευθεία (\epsilon) που τέμνει τον άξονα x'x στο σημείο Α.

Η γωνία \omega που διαγράφει ο άξονας x'x όταν στραφεί γύρω από το Α κατά τη θετική φορά, μέχρι να συμπέσει με την ευθεία (\epsilon), ονομάζεται γωνία που σχηματίζει η ευθεία \boldsymbol{(\epsilon)} με τον άξονα \boldsymbol{x'x} (σχήμα 1).

Γωνία που σχηματίζει ευθεία με τον άξονα \boldsymbol{x'x}

Συνέχεια ανάγνωσης ΚΛΙΣΗ – ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Α.

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Α.

    1. Αν το διάνυσμα \vec{\alpha} είναι μοναδιαίο, |\vec{\beta}| = 2 και (\widehat{\vec{\alpha}, \vec{\beta}}) = \dfrac{2\pi}{3}, να υπολογίσετε τα εσωτερικά γινόμενα:i_). \vec{\alpha} \cdot \vec{\beta},
      ii_). (\vec{\alpha} - 2\vec{\beta}) \cdot (\vec{\alpha} - \vec{\beta}),
      iii_). (\vec{\alpha} - 3\vec{\beta})^2.
    2. Συνέχεια ανάγνωσης ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Α.

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Β.

  1. Αν \vec{\alpha} = (3, \sqrt{3}) και \vec{\beta} = (\sqrt{3}, -1) να βρείτε τη γωνία των \vec{\alpha}, \vec{\beta}.
  2. Αν \vec{\alpha} = (1, \sqrt{3}) και \vec{\beta} = (-\sqrt{3}, 3) να βρείτε τη γωνία των \vec{\alpha}, \vec{\beta}.
  3. Αν \vec{\alpha} = (3, -4) και \vec{\beta} = \dfrac{1}{7}i + j, να βρείτε τη γωνία των \vec{\alpha}, \vec{\beta}.
  4. Αν Α(4, 1), Β(8, 2), Γ(1, 3), να αποδείξετε ότι η γωνία των \overrightarrow{AB}, \overrightarrow{A\Gamma} είναι αμβλεία.
  5. Συνέχεια ανάγνωσης ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Β.

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Γ.

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Γ.

    1. Αν \vec{\alpha}^2 = 5\vec{\beta}(2\vec{\alpha} - 5\vec{\beta}), να αποδείξετε ότι \vec{\alpha}\uparrow \uparrow \vec{\beta}.
    2. Αν το διάνυσμα \vec{\alpha} είναι μοναδιαίο και ισχύει \vec{\beta}^2 + \vec{\gamma}^2 = \vec{\alpha} \cdot (2\vec{\beta} - \vec{\alpha}), να υπολογίσετε την παράσταση Α = \vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma}.
    3. Αν το διάνυσμα \vec{\alpha} είναι μοναδιαίο και ισχύει |\vec{\beta}| = 2\sqrt{\vec{\alpha} \cdot \vec{\beta} - 1}, να αποδείξετε ότι \vec{\beta} = 2\vec{\alpha}.
    4.  Αν |\vec{\alpha}| = 2 και |\vec{\beta}| = \sqrt{\vec{\alpha} \cdot \vec{\beta} - 1}, να δείξετε ότι \vec{\alpha} = 2\vec{\beta}.
    5.  Αν τα διανύσματα \vec{\alpha}, \vec{\beta}, \vec{\gamma} είναι μοναδιαία και ισχύει \vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma} = 2, να αποδείξετε ότι \vec{\alpha} = \vec{\beta} = \vec{\gamma}.
    6. Αν \vec{\alpha}, \vec{\beta}, \vec{\nu} = \dfrac{|\vec{\beta}|}{|\vec{\alpha}|} \cdot \vec{\alpha} και \vec{\upsilon} = \dfrac{|\vec{\alpha}|}{|\vec{\beta}|} \cdot \vec{\beta}, να αποδείξετε ότι:i.).  \vec{\nu} \uparrow \uparrow \vec{\alpha} και |\vec{\upsilon}| = |\vec{\alpha}|.
      ii.). |\vec{\nu} + \vec{\upsilon}| = |\vec{\alpha} + \vec{\beta}|.
    7.  Αν για τα διανύσματα \vec{\alpha}, \vec{\beta} ισχύουν |\vec{\alpha}| = 2|\vec{\beta}|, ~\vec{\alpha}\neq \vec{0} και |\vec{\alpha} + \vec{\beta}| = |\vec{\beta}|, να αποδείξετε ότι \vec{\alpha} \uparrow\downarrow \vec{\beta}.
    8.  Αν |\vec{\alpha}| = |\vec{\beta}| = |\vec{\alpha} + \vec{\beta}|, να δείξετε ότι |\vec{\alpha} - \vec{\beta}| = |\vec{\alpha}|\sqrt{3}.
    9.  Αν |\vec{\alpha}| = 6 και |\vec{\beta}| = 2 και |\vec{\alpha} + \vec{\beta}| \geq 8, να αποδείξετε ότι:i.). |\vec{\alpha} + \vec{\beta}| = 8.
      ii.).\vec{\alpha} = 3\vec{\beta}.

      ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Γ.
    10. Συνέχεια ανάγνωσης ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Γ.