ΚΑΘΕΤΕΣ ΚΑΙ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ

ΚΑΘΕΤΕΣ ΚΑΙ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ


Έστω (\epsilon_{1}) και (\epsilon_{2}) δύο ευθείες με συντελεστές διεύθυνσης
\lambda_{1} και \lambda_{2} αντίστοιχα.
Αν τα διανύσματα \vec{\delta_{1}} και \vec{\delta_{2}} είναι παράλληλα προς τις (\epsilon_{1}) και (\epsilon_{2}) αντίστοιχα, τότε έχουμε τις ισοδυναμίες:
(\epsilon_{1}) \parallel (\epsilon_{2}) \Leftrightarrow \vec{\delta_{1}} \parallel \vec{\delta_{2}} \Leftrightarrow \lambda_{1} = \lambda_{2}

και

(\epsilon_{1}) \perp (\epsilon_{2}) \Leftrightarrow \vec{\delta_{1}} \perp \vec{\delta_{2}} \Leftrightarrow \lambda_{1} \lambda_{2} = -1

Με τον συμβολισμό (\epsilon_{1}) \parallel (\epsilon_{2}) εννοούμε ότι οι ευθείες (\epsilon_{1}) και (\epsilon_{2}) είναι παράλληλες ή συμπίπτουν.

Συνέχεια ανάγνωσης ΚΑΘΕΤΕΣ ΚΑΙ ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ