ΣΗΜΕΙΟ ΠΟΥ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

ΣΗΜΕΙΟ ΠΟΥ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

Αν γνωρίζουμε ότι το σημείο Μ(\mathrm{x}_{1}, \mathrm{y}_{1}) ανήκει στην ευθεία (\epsilon): \mathrm{y} = \lambda \mathrm{x} + \beta, τότε οι συντεταγμένες του επαληθεύουν την εξίσωσή της. Δηλαδή ισχύει ότι:

    \[\mathrm{y}_{1} = \lambda \mathrm{x}_{1} + \beta.\]

Άρα το σημείο Μ είναι της μορφής:

    \[M\big(\mathrm{x}_{1}\, , \,\lambda \mathrm{x}_{1} + \beta\big).\]


Συνέχεια ανάγνωσης ΣΗΜΕΙΟ ΠΟΥ ΑΝΗΚΕΙ ΣΕ ΕΥΘΕΙΑ

ΕΥΘΕΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΤΡΙΓΩΝΟ ΜΕ ΤΟΥΣ ΑΞΟΝΕΣ

Ευθεία με γνωστό συντελεστή διεύθυνσης που ικανοποιεί μια ιδιότητα.
Όταν η ευθεία (\epsilon) έχει γνωστό συντελεστή διεύθυνσης \lambda και ικανοποιεί μια ιδιότητα Ι,(π.χ ευθεια που σχηματιζει τριγωνο με τους αξονες) τότε για να βρούμε την εξίσωσή της, γράφουμε την ευθεία (\epsilon) στη μορφή:

    \[(\epsilon):\mathrm{y} = \lambda \mathrm{x} + \beta.\]

‘Ωστε ο μοναδικός άγνωστος να είναι ο \beta, τον οποίο θα υπολογίσουμε θεωρώντας ότι η (\epsilon) ικανοποιεί την ιδιότητα Ι.

ΕΥΘΕΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΤΡΙΓΩΝΟ ΜΕ ΤΟΥΣ ΑΞΟΝΕΣ

 
Συνέχεια ανάγνωσης ΕΥΘΕΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΤΡΙΓΩΝΟ ΜΕ ΤΟΥΣ ΑΞΟΝΕΣ

ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΓΝΩΣΤΟ ΣΗΜΕΙΟ

Ευθεία που διέρχεται από γνωστό σημείο και ικανοποιεί μια ιδιότητα

Όταν μια ευθεία (\epsilon) διέρχεται από γνωστό σημείο Α(\mathrm{x}_{0}, \mathrm{y}_{0}) και επιπλέον έχει μια ιδιότητα Ι, τότε για να βρούμε την εξίσωσή της, εργαζόμαστε ώς εξής:

  • Η ευθεία (\epsilon) έχει εξίσωση της μορφής:

        \[\mathrm{x} = \mathrm{x}_0 \quad \text{ή}\quad \mathrm{y} - \mathrm{y}_{0} = \lambda (\mathrm{x} - \mathrm{x}_{0}).\]

  • Εξετάζουμε αν η ευθεία με εξίσωση \mathrm{x} = \mathrm{x}_0 έχει την ιδιότητα Ι. Αν την έχει, τότε η \mathrm{x} = \mathrm{x}_0 είναι μια από τις ζητούμενες ευθείες.

Θεωρούμε ότι η ευθεία με εξίσωση \mathrm{y} - \mathrm{y}_{0} = \lambda (\mathrm{x} - \mathrm{x}_{0}) έχει την ιδιότητα Ι και βρίσκουμε (αν υπάρχουν) τις τιμές του \lambda και τις αντίστοιχες ευθείες.

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΓΝΩΣΤΟ ΣΗΜΕΙΟ