Αρχείο ετικέτας BOLZANO

ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Για να λύσουμε εξισώσεις παραγωγίσιμων συναρτήσεων με τη βοήθεια της μονοτονίας διακρίνουμε τις παρακάτω περιπτώσεις:
Κάθε γνησίως μονότονη συνάρτηση έχει το πολύ μία ρίζα
Χρησιμοποιώντας την παραπάνω πρόταση μπορούμε να λύσουμε μια εξίσωση ως εξής:
Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΚΡΙΒΩΣ -n- ΣΤΟ ΠΛΗΘΟΣ ΡΙΖΩΝ ΕΞΙΣΩΣΗΣ

Για να αποδείξουμε ότι μια εξίσωση της μορφής f(x)=0 έχει ακριβώς \nu, στο πλήθος ρίζες, εργαζόμαστε ως εξής:

  • Αποδεικνύουμε ότι η εξίσωση έχει τουλάχιστον \nu, στο πλήθος ρίζες.
  • Συνέχεια ανάγνωσης ΑΚΡΙΒΩΣ -n- ΣΤΟ ΠΛΗΘΟΣ ΡΙΖΩΝ ΕΞΙΣΩΣΗΣ

    ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΚΑΙ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

    Αν f συνεχής και γνησίως μονότονη στο διάστημα A. Τότε το σύνολο τιμών της f το f(A) θα είναι το παρακάτω στις αντίστοιχες περιπτώσεις:

    • A=\left[\alpha,\beta\right] με f Γνησίως αύξουσα τότε
      f(A)=\left[f(\alpha),f(\beta)\right]
    • A=\left[\alpha,\beta\right] με fΓνησίως φθίνουσα τότε
      f(A)=\left[f(\beta),f(\alpha)\right]
    • A=\left(\alpha,\beta\right] με f Γνησίως αύξουσα τότε f(A)=(\displaystyle\lim_{x\to\alpha+}f(x),f(\beta) ]
    • A=\left(\alpha,\beta\right]με f Γνησίως φθίνουσα τότεf(A)=[f(\beta),\displaystyle{\lim_{x\to\alpha+}f(x))}
    • A=[\alpha,\beta) με f Γνησίως αύξουσα τότε f(A)=[f(\alpha), \displaystyle\lim_{x\to\beta^-}f(x))
    • A=[\alpha,\beta)με f Γνησίως φθίνουσα τότεf(A)=(\displaystyle\lim_{x\to\beta^-}f(x),f(\alpha)]
    • A=(\alpha,\beta)με f Γνησίως αύξουσα τότε f(A)=(\displaystyle{\lim_{x\to\alpha+}f(x), \displaystyle\lim_{x\to\beta^-}f(x))
    • A=(\alpha,\beta)με f Γνησίως φθίνουσατότε f(A)=( \displaystyle\lim_{x\to\beta^-}f(x),\displaystyle{\lim_{x\to\alpha+}f(x))

    Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΚΑΙ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

    ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ

    Αν η f είναι συνεχής συνάρτηση στο \left[\alpha,\beta\right], τότε η f παίρνει στο \left[\alpha,\beta\right] μια μέγιστη τιμή M και μια ελάχιστη τιμή m.
    Δηλαδή, υπάρχουν x_1,x_2\in\left[\alpha,\beta\right] τέτοια ώστε, αν m=f(x_1) και M=f(x_2), να ισχύει

        \[m\leq f(x)\leq M, \quad \text{για κάθε} \quad x\in\left[\alpha,\beta\right]\]

    Αν m =M Τότε η f είναι σταθερή στο [\alpha , \beta]
    Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ

    ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

    Παράδειγμα
    Δίνεται συνεχής συνάρτηση f:[-3,3]\to\mathbb{R} για την οποία ισχύει
    x^2+f^2(x)=9, \quad για κάθε x \in[-3,3].

    i) Να λύσετε την εξίσωση f(x)=0
    ii) Αν επιπλέον η γραφική παράσταση της f διέρχεται από το σημείο A(0,3) να βρείτε τον τύπο της f.
    Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

    ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ

    Παράδειγμα
    Δίνεται συνεχής f:\mathbb{R}\to\mathbb{R}, με f(x)\neq 0 για κάθε x\in\mathbb{R}, της οποίας η γραφική παράσταση διέρχεται από το σημείο A(0,3). Να βρείτε το όριο

        \[\displaystyle\lim_{x\to -\infty}{\left[f(-2)x^{3}+5x^2-3x+1\right]}\]

    Συνέχεια ανάγνωσης ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ

    ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΣΕ ΔΙΑΣΤΗΜΑ ΠΟΥ ΔΕΝ ΕΧΕΙ ΡΙΖΑ

    Παράδειγμα
    Να μελετήσετε τη συνάρτηση f(x)=\sqrt{2}συνx-1

    ως προς τα πρόσημα στο διάστημα \left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]
    Συνέχεια ανάγνωσης ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΣΕ ΔΙΑΣΤΗΜΑ ΠΟΥ ΔΕΝ ΕΧΕΙ ΡΙΖΑ

    ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ

    Μία συνεχής συνάρτηση f διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της f χωρίζουν το πεδίο ορισμού της.
    Για να βρούμε το πρόσημο μιας συνεχούς συνάρτησης f σε ένα διάστημα Δ εργαζόμαστε ως εξής:
    * Λύνουμε την εξίσωση f(x)=0
    * Σχηματίζουμε πίνακα στον οποίο τοποθετούμε τις ρίζες της παραπάνω εξίσωσης.
    * Σε καθένα από τα υποδιαστήματα που δημιουργούνται επιλέγουμε κατάλληλο αριθμο \xi και βρίσκουμε το πρόσημο της τιμής f(\xi). Το πρόσημο αυτό έχει η f σε ολόκληρο το αντίστοιχο υποδιάστημα.
    Συνέχεια ανάγνωσης ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ

    ΥΠΑΡΞΗ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΔΕΝ ΟΡΙΖΕΤΑΙ ΣΤΑ ΑΚΡΑ ΔΙΑΣΤΗΜΑΤΟΣ

    Ύπαρξη \nu ριζών

    Για να αποδείξουμε ότι μια εξίσωση της μορφής f(x)=0 έχει τουλάχιστον \nu ρίζες σε ένα διάστημα (\alpha,\beta) χωρίζουμε το (\alpha,\beta) σε \nu κατάλληλα υποδιαστήματα, τα οποία να μην έχουν κοινά εσωτερικά σημεία και εφαρμόζουμε το Θεώρημα Bolzano για την f σε καθένα από τα διαστήματα αυτά.
    Συνέχεια ανάγνωσης Ύπαρξη \nu ριζών