Αρχείο ετικέτας ΣΥΝΑΡΤΗΣΕΙΣ ΜΕ ΚΛΑΔΟΥΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 1283 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 1283 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΕΠΙΠΕΔΟ ΔΥΣΚΟΛΙΑΣ ΘΕΜΑΤΟΣ 2 ΔΕΥΤΕΡΟΥ

 

6.1 Η έννοια της συνάρτησης.

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 1283 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΘΕΜΑ 37

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΘΕΜΑ 37

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΘΕΜΑ 37

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΠΕΡΙΕΧΕΙ ΑΠΟΛΥΤΗ ΤΙΜΗ

Για να υπολογίσουμε το ορισμένο ολοκλήρωμα μιας συνάρτησης f που περιέχει απόλυτη τιμή, κάνουμε χρήση του ορισμού της απόλυτης τιμής και γράφουμε τον τύπο της f χωρίς το απόλυτο. Τότε η f γίνεται πολλαπλού τύπου και μπορούμε να υπολογίσουμε το ορισμένο ολοκλήρωμα.

Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΠΕΡΙΕΧΕΙ ΑΠΟΛΥΤΗ ΤΙΜΗ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

‘Οταν έχουμε μια συνάρτηση της μορφής:

    \[f(x)=\kladoidyo{f_1(x)}{x\leq x_o}{f_2(x)}{x>x_o}\]

Για να υπολογίσουμε ένα ολοκλήρωμα

    \[\int_{\alpha}^{\beta} f(x)dx\]

με \alpha<x_o<\beta εργαζόμαστε ως εξής:

  • Για να έχει νόημα το

        \[\int_{\alpha}^{\beta} f(x)dx\]

    πρέπει η f να είναι συνεχής στο [\alpha, \beta] άρα και στο x_0.

  • Επίσης:

        \begin{eqnarray*} 		\int_{\alpha}^{\beta} f(x)dx&=&\int_{\alpha}^{x_0} f(x)dx+\int_{x_0}^{\beta} f(x)dx\\ 									&=&\int_{\alpha}^{x_0} f_1(x)dx+\int_{x_0}^{\beta} f_2(x)dx\\ 									&=&... 	\end{eqnarray*}

  • Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

    ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ ΣΕ ΣΗΜΕΙΟ ΑΣΥΝΕΧΕΙΑΣ

    Στη περίπτωση που η συνάρτηση f, είναι ασυνεχής σε ένα σημείο x_{0} του πεδίου ορισμού της τότε διακρίνουμε τις παρακάτω περιπτώσεις:

    • Αν \displaystyle\lim_{x\to x_{0}^{-}}f(x)\leq f(x_{0}) και \displaystyle\lim_{x\to x_{0}^{+}}f(x)\leq f(x_{0}) και η f αυξάνεται αριστερά του x_{0} και φθίνει δεξιά του x_{0}, τότε στο x_{0} η συνάρτηση f παρουσιάζει τοπικό μέγιστο.
    • Αν \displaystyle\lim_{x\to x_{0}^{-}}f(x)\geq f(x_{0}) και \displaystyle\lim_{x\to x_{0}^{+}}f(x)\geq f(x_{0}) και η f φθίνει αριστερά του x_{0} και αυξάνεται δεξιά του x_{0}, τότε στο x_{0} η συνάρτηση f παρουσιάζει τοπικό ελάχιστο.

    Σε κάθε περίπτωση η σχεδίαση μιας πρόχειρης γραφικής παράστασης της συνάρτησης f κοντά στη περιοχή του x_{0} μας βοηθά στην απάντηση μας.

    Συνέχεια ανάγνωσης ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ ΣΕ ΣΗΜΕΙΟ ΑΣΥΝΕΧΕΙΑΣ

    ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

    Να βρείτε τα ακρότατα της συνάρτησης

        \[f(x)= \left\{ \begin{tabular}{ll} $x^2+2x-6,$ &$x\leq2$ \\\\ $x^2-8x+14,$ & $ x>2$  \end{tabular} \right. \]

    Συνέχεια ανάγνωσης ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

    ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    Θεώρημα Fermat
    Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα \Delta.
    Αν ισχύουν τα παρακάτω

    • η f παρουσιάζει τοπικό ή ολικό ακρότατο στο x_0,
    • το x_0 είναι εσωτερικό σημείο του \Delta,
    • η f είναι παραγωγίσιμη στο x_0,

    τότε f'(x_0)=0.
    Συνέχεια ανάγνωσης ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΜΟΝΟΤΟΝΙΑ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΠΟΥ Η ΠΑΡΑΓΩΓΟΣ ΔΙΑΤΗΡΕΙ ΣΤΑΘΕΡΟ ΠΡΟΣΗΜΟ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

    Αν για μια συνάρτηση f ορίζεται στο σύνολο A=\Delta_1\cup\Delta_2, όπου \Delta_1 και \Delta_2 διαστήματα και η παράγωγος f' διατηρει το ίδιο πρόσημο για κάθε εσωτερικό σημείο x των \Delta_1 και \Delta_2, τότε η f είναι γνησίως μονότονη σε καθένα από τα διαστήματα \Delta_1 και \Delta_2.
    Δεν μπορούμε να βγάλουμε το συμπέρασμα ότι η f είναι γνησίως μονότονη σε όλο το σύνολο A=\Delta_1\cup\Delta_2.
    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΠΟΥ Η ΠΑΡΑΓΩΓΟΣ ΔΙΑΤΗΡΕΙ ΣΤΑΘΕΡΟ ΠΡΟΣΗΜΟ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

    ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

    ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

    ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΑΠΟΛΥΤΑ

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΑΠΟΛΥΤΑ