Αρχείο ετικέτας ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ

ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΝΙΣΟΤΗΤΑΣ

Παράδειγμα.1.
Αν για την συνεχή συνάρτηση f: \rr \to \rr, ισχύει ότι:

    \[x\cdot f(x) \leq x^{2}+4x+\hm x, \quad x \in \rr,\]

να βρεθεί η τιμή του f(0).

Συνέχεια ανάγνωσης ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΝΙΣΟΤΗΤΑΣ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ

* Μια συνάρτση f την λέμε συνεχή στο x_{0} του πεδίου ορισμού της, όταν

    \[\lim_{x \to x_{0}}f(x) = f(x_{0}.)\]

*Μια συνάρτηση f λέγεται συνεχής συνάρτηση, όταν είναι συνεχής σε όλα τα σημεία του πεδίου ορισμού της.
Συνέχεια ανάγνωσης ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ

ΧΡΗΣΗ ΒΟΗΘΗΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ

Αν έχουμε ως δεδομένο το όριο μιας παράστασης που περιέχει τη συνάρτηση f(x) και ζητείται το όριο της f(x) τότε:

  • Θέτουμε την παράσταση g(x).
  •   Λύνουμε την πράσταση ως προς f(x).
  •   Υπολογίζουμε το όριο της f(x) με δεδομένο το όριο της g(x).

Συνέχεια ανάγνωσης ΧΡΗΣΗ ΒΟΗΘΗΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ

ΟΡΙΟ ΚΛΑΣΜΑΤΟΣ ΜΕ ΟΡΙΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΗΔΕΝ ΚΑΙ ΟΡΙΟ ΑΡΙΘΜΗΤΗ ΔΙΑΦΟΡΟ ΤΟΥ ΜΗΔΕΝΟΣ

Για να υπολογίσουμε ενα όριο της μορφής \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)} με \displaystyle\lim_{x\to x_{0}}f(x)=l \neq 0 και\displaystyle\lim_{x\to x_{0}}g(x)=0
Tότε βρίσκουμε το πρόσημο της g(x) κοντά στο x_{0}
και το ζητούμενο όριο θα μας κανει +\infty ή -\infty.
Δηλαδή

  •   \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)}=+\infty στην περίπτωση που l ομόσημο με το πρόσημο της g(x) κοντά στο x_{0}
  • \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)}=-\infty στην περίπτωση που l ετερόσημο με το πρόσημο της g(x) κοντά στο x_{0}

Συνέχεια ανάγνωσης ΟΡΙΟ ΚΛΑΣΜΑΤΟΣ ΜΕ ΟΡΙΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΗΔΕΝ ΚΑΙ ΟΡΙΟ ΑΡΙΘΜΗΤΗ ΔΙΑΦΟΡΟ ΤΟΥ ΜΗΔΕΝΟΣ

ΟΡΙΟ ΤΗΣ ΜΟΡΦΗΣ ΕΝΑ ΠΡΟΣ ΜΗΔΕΝ

  • Αν είναι \displaystyle\lim_{x\to x_{0}}f(x) =0 και f(x) > 0 κοντά στο x_{0}, τότε

        \[\displaystyle\lim_{x\to x_{0}}\dfrac{1}{f(x)} =+\infty\]

  • Αν είναι \displaystyle\lim_{x\to x_{0}}f(x) =0 και f(x) < 0 κοντά στο x_{0}, τότε

        \[\displaystyle\lim_{x\to x_{0}}\dfrac{1}{f(x)} =-\infty\]

Συνέχεια ανάγνωσης ΟΡΙΟ ΤΗΣ ΜΟΡΦΗΣ ΕΝΑ ΠΡΟΣ ΜΗΔΕΝ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ ΚΑΙ ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

Παράδειγμα
Δίνεται η συνάρτηση f:\RR\rightarrow\RR για την οποία ισχύει:

    \[\hm^2x\leq f(x)+2x\syn x\leq x^2, \forall x \in \rr\]

Να βρείτε τα όρια:

    \[ \newcounter{afa} \newcommand{\afa }{% \stepcounter{afa}% %exartate \alph{tbc})\ } %exartate \Alph{tbc})\ } \roman{afa})\ } \begin{tabular}{ l l } \afa $\,\,\orio{x}{0}{f(x)}\quad$ & \afa $\,\,\orio{x}{0}{\dfrac{f(x)+2x}{x^2}}$  \\ \end{tabular} \]

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ ΚΑΙ ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ ΚΑΙ ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

Παράδειγμα.
Δίνεται η συνάρτηση f:\RR\rightarrow\RR για την οποία ισχύει

    \[\orio{x}{0}{\dfrac{f(x)-\hm x}{\sqrt{x+1}-1}}=6\]

Να υπολογίσετε τα όρια:

    \[ \newcounter{afa} \newcommand{\afa }{% \stepcounter{afa}% %exartate \alph{tbc})\ } %exartate \Alph{tbc})\ } \roman{afa})\ } \begin{tabular}{ l l l} \afa $\,\,\orio{x}{0}{f(x)}$ & \afa $\,\,\orio{x}{0}{\dfrac{f(x)}{x}}$ & \afa $\,\,\orio{x}{0}{\dfrac{xf(x)-\hm^2 x}{\sqrt{x^2+4}-2}}$\\ \end{tabular} \]

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ ΚΑΙ ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

ΟΡΙΟ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

Για τον υπολογισμό ορίων της μορφής A = \displaystyle\lim_{x\to x_{0}} f\big(g(x)\big), τότε:

  • Θέτουμε g(x) = u, οπότε \displaystyle \lim_{x\to x_{0}}g(x) = u_{0}.
  • Αν u \neq u_{0} κοντά στο x_{0}, τότε A =\displaystyle\lim_{u \to u_{0}}f(u).

Δηλαδή αντί να υπολογίσουμε το \displaystyle\lim_{x\to x_{0}} f\big(g(x)\big), υπολογίζουμε το (πιθανόν) ευκολότερο \displaystyle\lim_{u \to u_{0}}f(u).

Συνέχεια ανάγνωσης ΟΡΙΟ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

Έστω ένα όριο της μορφής:

    \[\lim_{x\to x_{o}}(f(x)\cdot g(x))\]

όπου f,g συναρτήσεις για τις οποίες ισχύει:

  • \displaystyle\lim_{x\to x_{o}}f(x)=0, δηλαδή η f είναι «μηδενική» συνάρτηση.
  • |g(x)|\leq M, όπου M>0, δηλαδή η g είναι μια φραγμένη συνάρτηση.

Συνέχεια ανάγνωσης ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ