Αρχείο ετικέτας ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΟΡΙΟ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

Για τον υπολογισμό ορίων της μορφής A = \displaystyle\lim_{x\to x_{0}} f\big(g(x)\big), τότε:

  • Θέτουμε g(x) = u, οπότε \displaystyle \lim_{x\to x_{0}}g(x) = u_{0}.
  • Αν u \neq u_{0} κοντά στο x_{0}, τότε A =\displaystyle\lim_{u \to u_{0}}f(u).

Δηλαδή αντί να υπολογίσουμε το \displaystyle\lim_{x\to x_{0}} f\big(g(x)\big), υπολογίζουμε το (πιθανόν) ευκολότερο \displaystyle\lim_{u \to u_{0}}f(u).

Συνέχεια ανάγνωσης ΟΡΙΟ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

Έστω ένα όριο της μορφής:

    \[\lim_{x\to x_{o}}(f(x)\cdot g(x))\]

όπου f,g συναρτήσεις για τις οποίες ισχύει:

  • \displaystyle\lim_{x\to x_{o}}f(x)=0, δηλαδή η f είναι «μηδενική” συνάρτηση.
  • |g(x)|\leq M, όπου M>0, δηλαδή η g είναι μια φραγμένη συνάρτηση.

Συνέχεια ανάγνωσης ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ

Όταν έχουμε να υπολογίσουμε το όριο του ημιτονου και το όριο του συνημιτόνου στο \textcolor{color3}{ x_{0} \in \mathbb{R}} γενικα ισχύει ότι

    \[\textcolor{color3}{\lim_{x\to x_{0}}{ \hm x =\hm x_{0}} \quad \text{και} \quad \lim_{x\to x_{0}} \syn x =\syn x_{0}.}\]

Στην περίπτωση που έχουμε τριγωνομετρικά όρια στο \textcolor{color3}{x_{0} =0 ,} της απροσδιόριστης μορφής μηδέν προς μηδέν, \textcolor{color3}{\dfrac{0}{0},} για να ξεπεράσουμε την απροσδιοριστία κάνουμε κατάλληλους μετασχηματισμούς, ώστε να εμφανιστούν τα όρια:

    \[\textcolor{color3}{\lim_{x\to 0}{ \frac{\hm x}{x}=1} \quad \text{και} \quad \lim_{x\to 0} \frac{\syn x -1}{x}=0.}\]

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ