Αρχείο ετικέτας ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 11

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 11

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 11

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 12

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 12

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 12

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 34

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 34

Rendered by QuickLaTeX.com

Απάντηση
Συνέχεια ανάγνωσης ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 34

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 35

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 35

Rendered by QuickLaTeX.com

Απάντηση
Συνέχεια ανάγνωσης ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 35

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 37

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 37

Rendered by QuickLaTeX.com

Απάντηση
Συνέχεια ανάγνωσης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 37

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 38

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 38

Rendered by QuickLaTeX.com

Απάντηση
Συνέχεια ανάγνωσης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 38

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ MAΘΗΜΑΤΙΚΩΝ Φ11/205

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ Φ11/205 MAΘΗΜΑΤΙΚΩΝ

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ MAΘΗΜΑΤΙΚΩΝ Φ11/205

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ Φ10/204

ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

Έστω οτι η συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [\alpha, \beta], τότε από το θεώρημα μέγιστης και ελάχιστης τιμής, η συνάρτηση f, παρουσιάζει ένα ελάχιστο m και ένα μέγιστο M.
Τότε το σύνολο τιμών της συνάρτησης f, είναι το διάστημα [m,M]. Για να βρούμε το ελάχιστο και το μέγιστο της συνάρτησης f, εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

ΣΥΝΟΛΟ ΤΙΜΩΝ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ

Έστω f: A \to \rr, μια συνεχής συνάρτηση. Για να βρούμε το σύνολο τιμών της συνάρτησης f, εργαζόμαστε ως εξής

  • Μελετάμε την f ως προς τη μονοτονία.
  • Βρίσκουμε τα διαστήματα \Delta_{1},\Delta_{2},\cdots του πεδίου ορισμού της συνάρτησης f, σε καθένα απο τα διαστήματα η οποία διατηρεί μονοτονία.

Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ