Αρχείο ετικέτας ΣΥΝΘΕΤΟ ΟΡΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL

Για τον ορισμό της παραγώγου ξέρουμε ότι ισοδύναμα ισχύει:
Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη στο x_{0}\in A_{f}, αν υπάρχει και είναι πραγματικός αριθμός το παρακάτω όριο:

    \[\lim_{h\to 0}\dfrac{f(x_{0}+h)-f(x_{0})}{h}.\]

Συνέχεια ανάγνωσης ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL


Παράδειγμα.1

Έστω f:\rr\to\rr μια συνάρτηση παραγωγίσιμη με f(0)=f'(0)=0, \, f''(0)=2.

Αν:

    \[ g(x)=\left\{ 		\begin{tabular}{ll} 			$\dfrac{f(x)}{x}, \quad x\neq 0$ \\\\ 			$ 0, \quad x=0$  		\end{tabular} 	\right. \]

i_) Να βρείτε την g'(0).
ii_) Να δείξετε ότι η g' είναι συνεχής στο x_{0}=0.
Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL

Η ΣΩΣΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

Η σωστή χρήση του κανονα του DE L HOSPITAL απαιτεί μεγάλη προσοχή.
Αν \displaystyle\lim_{x \to x_0}f(x)=0 και \displaystyle\lim_{x \to x_0}g(x)=0
όπου x_0\in\rr\cup\{-\infty,+\infty\} και υπάρχει το όριο \displaystyle\lim_{x \to x_0}\frac{f'(x)}{g'(x)} πεπερασμένο ή άπειρο τότε:

    \[\lim_{x \to x_0}\frac{f(x)}{g(x)}=\lim_{x \to x_0}\frac{f'(x)}{g'(x)}\]

Συνέχεια ανάγνωσης Η ΣΩΣΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

ΑΣΥΜΠΤΩΤΗ ΚΑΙ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

Παράδειγμα.
Δίνεται συνάρτηση f:\rr\rightarrow\rr της οποίας η γραφική παράσταση έχει ασύμπτωτη στο +\infty την ευθεία y=2x-1. Να υπολογίσετε το όριο

    \[\lim_{x \to +\infty}\frac{f(x)\ln(1+e^x)}{x^2f(x)-2x^3}\]

Συνέχεια ανάγνωσης ΑΣΥΜΠΤΩΤΗ ΚΑΙ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

ΑΣΥΜΠΤΩΤΗ ΚΑΙ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

Η ευθεία y=4x+2 είναι πλάγια ασύμπτωτη στο +\infty της C_f. Να βρεθούν τα όρια

    \[\lim_{x \to +\infty}\frac{x^2f(x)-4x^3}{xf(x)-2010} \quad \text{και} \quad \lim_{x \to +\infty}\frac{f(x)(x+1)-4x^2}{3x-2010}\]

Συνέχεια ανάγνωσης ΑΣΥΜΠΤΩΤΗ ΚΑΙ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ

ΣΥΝΘΕΤΟ ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΡΙΖΙΚΑ

Παράδειγμα.1.
Να υπολογισθεί το όριο στο συν άπειρο

    \[\lim_{x\to +\infty}\Big(\sqrt{x^{2}+1}+\sqrt{4x^{2}+5x+1}-3x+1\Big).\]

Συνέχεια ανάγνωσης ΣΥΝΘΕΤΟ ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΡΙΖΙΚΑ

ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.1.
Αν \displaystyle\lim_{x\to 1}f(x)=-\infty, να υπολογισθεί το όριο

    \[\lim_{x\to 1} \Big[ \sqrt{4f^{2}(x)-3f(x)+2}+f(x)\Big]\]

Συνέχεια ανάγνωσης ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟΥ ΟΡΙΟΥ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ

Για να υπολογίσουμε το μη πεπερασμένο όριο στο x_{0}\in \rr που περιέχει απόλυτες τιμές, πρέπει πρώτα να υπολογίσουμε το πρόσημο των συναρτήσεων που είναι μέσα στο απόλυτο λαμβάνοντας υπόψιν

    \[\text{Αν} \displaystyle\lim_{x\to x_{0}}f(x) = +\infty \quad \text{τότε} \, f(x)>0.\]

    \[\text{Αν} \displaystyle\lim_{x\to x_{0}}f(x) = -\infty \quad \text{τότε} \, f(x)<0.\]

Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟΥ ΟΡΙΟΥ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ