Αρχείο ετικέτας ΣΥΝΕΠΕΙΕΣ BOLZANO

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 17

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 17

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 17

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 7

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 7

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 7

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ14/205

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ14/205

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ14/205

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ Φ4/203

ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΚΑΙ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

Αν f συνεχής και γνησίως μονότονη στο διάστημα A. Τότε το σύνολο τιμών της f το f(A) θα είναι το παρακάτω στις αντίστοιχες περιπτώσεις:

  • A=\left[\alpha,\beta\right] με f Γνησίως αύξουσα τότε
    f(A)=\left[f(\alpha),f(\beta)\right]
  • A=\left[\alpha,\beta\right] με fΓνησίως φθίνουσα τότε
    f(A)=\left[f(\beta),f(\alpha)\right]
  • A=\left(\alpha,\beta\right] με f Γνησίως αύξουσα τότε f(A)=(\displaystyle\lim_{x\to\alpha+}f(x),f(\beta) ]
  • A=\left(\alpha,\beta\right]με f Γνησίως φθίνουσα τότεf(A)=[f(\beta),\displaystyle{\lim_{x\to\alpha+}f(x))}
  • A=[\alpha,\beta) με f Γνησίως αύξουσα τότε f(A)=[f(\alpha), \displaystyle\lim_{x\to\beta^-}f(x))
  • A=[\alpha,\beta)με f Γνησίως φθίνουσα τότεf(A)=(\displaystyle\lim_{x\to\beta^-}f(x),f(\alpha)]
  • A=(\alpha,\beta)με f Γνησίως αύξουσα τότε f(A)=(\displaystyle{\lim_{x\to\alpha+}f(x), \displaystyle\lim_{x\to\beta^-}f(x))
  • A=(\alpha,\beta)με f Γνησίως φθίνουσατότε f(A)=( \displaystyle\lim_{x\to\beta^-}f(x),\displaystyle{\lim_{x\to\alpha+}f(x))

Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΚΑΙ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑ

ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ

Αν η f είναι συνεχής συνάρτηση στο \left[\alpha,\beta\right], τότε η f παίρνει στο \left[\alpha,\beta\right] μια μέγιστη τιμή M και μια ελάχιστη τιμή m.
Δηλαδή, υπάρχουν x_1,x_2\in\left[\alpha,\beta\right] τέτοια ώστε, αν m=f(x_1) και M=f(x_2), να ισχύει

    \[m\leq f(x)\leq M, \quad \text{για κάθε} \quad x\in\left[\alpha,\beta\right]\]

Αν m =M Τότε η f είναι σταθερή στο [\alpha , \beta]
Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ

ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα
Δίνεται συνεχής συνάρτηση f:[-3,3]\to\mathbb{R} για την οποία ισχύει
x^2+f^2(x)=9, \quad για κάθε x \in[-3,3].

i) Να λύσετε την εξίσωση f(x)=0
ii) Αν επιπλέον η γραφική παράσταση της f διέρχεται από το σημείο A(0,3) να βρείτε τον τύπο της f.
Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα
Δίνεται συνεχής f:\mathbb{R}\to\mathbb{R}, με f(x)\neq 0 για κάθε x\in\mathbb{R}, της οποίας η γραφική παράσταση διέρχεται από το σημείο A(0,3). Να βρείτε το όριο

    \[\displaystyle\lim_{x\to -\infty}{\left[f(-2)x^{3}+5x^2-3x+1\right]}\]

Συνέχεια ανάγνωσης ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ