Αρχείο ετικέτας ΠΑΡΑΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Να βρείτε τους πραγματικούς αριθμούς \alpha,\beta και \gamma ώστε να ισχύει

    \[\lim_{x \to 1}\frac{\alpha e^{2x}+\beta x+\gamma}{(x-1)^2}=2\]

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΑΠΟ ΓΝΩΣΤΗ ΑΣΥΜΠΤΩΤΗ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Δίνεται η συνάρτηση

    \[f(x)=\frac{\alpha x^2+\beta x}{x-2}, \quad \alpha,\beta\in\rr\]

Να βρείτε τις τιμές των \alpha και \beta, ώστε η ευθεία (\epsilon): y=2x-1 είναι ασύμπτωτη της C_f στο +\infty.
Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΑΠΟ ΓΝΩΣΤΗ ΑΣΥΜΠΤΩΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΚΥΡΤΟΤΗΤΑ ΚΑΙ ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

Έστω μια συνάρτηση f η οποία είναι δύο φορές παραγωγίσιμη σε ένα διάστημα \Delta.
Για να είναι η f κυρτή (αντίστοιχα κοίλη) στο \Delta αρκεί να ισχύει f''(x)\geq0 (αντίστοιχα f''(x)\leq0) για κάθε x\in\Delta και η ισότητα f''(x)=0 να ισχύει για διακεκριμένες τιμές του x.
Συνέχεια ανάγνωσης ΚΥΡΤΟΤΗΤΑ ΚΑΙ ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

Έστω μια συνάρτηση f δύο φορές παραγωγίσιμη σε ένα διάστημα \Delta, της οποίας ο τύπος περιέχει μια παράμετρο.
Αν θέλουμε να βρούμε τις τιμές της παραμέτρου, ώστε η γραφική παράστσταση, C_f, να έχει σημείο καμπής στο x_0, τότε απαιτούμε να ισχύει

    \[f''(x_0)=0.\]

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

Αν μια εξίσωση περιέχει μια πραγματική, παράμετρο \lambda \in \rr, τότε για να βρούμε το πλήθος των ριζών της εξίσωσης για τις διάφορες τιμές του \lambda \in \rr, εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

Αν έχουμε ως δεδομένο μια ανισότητα της μορφής

    \[f(x)\leq g(x) \quad \text{ή} \quad f(x)\geq g(x)\]

για κάθε x\in\Delta και το ζητούμενο είναι να αποδείξουμε μια ισότητα τότε εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

ΠΑΡΑΓΩΓΙΣΙΜΗ ΣΥΝΑΡΤΗΣΗ ΧΩΡΙΣ ΑΚΡΟΤΑΤΑ

Όταν μας ζητούν να αποδείξουμε ότι μια παραγωγίσιμη συνάρτηση f δεν έχει ακρότατα, συνήθως εργαζόμαστε με τη μέθοδο της απαγωγής σε άτοπο, Υποθέτουμε δηλαδή ότι η f παρουσιάζει ακρότατο σε κάποιο σημείο x_0, το οποίο είναι εσωτερικό ενός διαστήματος \Delta του πεδίου ορισμού της f, οπότε σύμφωνα με το θεώρημα του Fermat ισχύει ότι f'(x_0)=0. Με τη βοήθεια αυτής της σχέσης προσπαθούμε να καταλήξουμε σε άτοπο.
Συνέχεια ανάγνωσης ΠΑΡΑΓΩΓΙΣΙΜΗ ΣΥΝΑΡΤΗΣΗ ΧΩΡΙΣ ΑΚΡΟΤΑΤΑ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΑΡΑΜΕΤΡΩΝ ΓΙΑ ΤΗΝ ΥΠΑΡΞΗ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ

Όταν ο τύπος μιας συνάρτησης f περιέχει παραμέτρους και γνωρίζουμε ότι η f παρουσιάζει ακρότατο στο x_0, τότε για να βρούμε τις παραμέτρους εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΑΡΑΜΕΤΡΩΝ ΓΙΑ ΤΗΝ ΥΠΑΡΞΗ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ

ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Δίνεται η συνάρτηση f(x)=2x^3+3\alpha x^2+6x-4 \quad \text{με} \,\alpha\in\rr.
Να βρείτε για ποιές τιμές του \alpha η f είναι γνησίως αύξουσα στο \rr.
Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

Παράδειγμα.1.
Να βρεθεί η τιμή της παραμέτρου \alpha \in \rr, ώστε να είναι συνεχής η συνάρτηση

    \[ f(x)=\left\{ 		\begin{tabular}{ll} 			$\dfrac{5x -10}{x+1-\sqrt{x+7}},$ & $x>2$ \\\\                         $ \alpha x^{2}-5x +4\alpha, $ &   $ x\leq 2$  		\end{tabular} 	\right. \]

Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ