Αρχείο ετικέτας ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΙΣΗΣ

ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

Έστω δύο συναρτήσεις f,g με πεδία ορισμού A και B αντίστοιχα. Τότε οι πράξεις του αθροίσματος, διαφοράς, γινόμενου και πηλίκου ορίζονται ως εξής:

  • S(x)=f(x)+g(x), για x \in A\cap B (Δηλαδή το άθροισμα S έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B δηλαδή το σύνολο A\cap B.)
  • D(x)=f(x)-g(x), για x \in A\cap B (Δηλαδή το άθροισμα S έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B δηλαδή το σύνολο A\cap B.)
  • P(x)=f(x)\cdot g(x), για \quad x \in A\cap B(Δηλαδή το άθροισμα S έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B δηλαδή το σύνολο A\cap B.)
  • R(x)=\dfrac{f(x)}{g(x)}, για \{x \in A\cap B \quad / \quad g(x) \neq 0\} (Δηλαδή το πηλίκο R έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B, τέτοια ώστε να μην μηδενίζουν τον παρονομαστή, δηλαδή το σύνολο \{x \in A\cap B \quad /  \quad g(x) \neq 0\}).
  • Συνέχεια ανάγνωσης ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ