Αρχείο ετικέτας ΟΡΙΟ ΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ

Αν \displaystyle\lim_{x \to x_0}f(x)=0 και \displaystyle\lim_{x \to x_0}g(x)=0
όπου x_0\in\rr\cup\{-\infty,+\infty\} και υπάρχει το όριο \displaystyle\lim_{x \to x_0}\frac{f'(x)}{g'(x)} πεπερασμένο ή άπειρο τότε:

    \[\lim_{x \to x_0}\frac{f(x)}{g(x)}=\lim_{x \to x_0}\frac{f'(x)}{g'(x)}\]

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ

ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ

Παράδειγμα.1.
Να βρεθεί η τιμή της παραμέτρου \alpha,\beta \in \rr, ώστε να υπάρχει το όριο στο άπειρο και να ισχύει:

    \[\lim_{x\to +\infty}\dfrac{(\alpha -2)\cdot x^{2}+(3\alpha -2\beta)\cdot x+ 7}{(\beta +3)\cdot x-13}=4.\]

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ

ΔΙΕΡΕΥΝΗΣΗ ΠΑΡΑΜΕΤΡΟΥ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΟΡΙΟΥ ΣΤΟ ΑΠΕΙΡΟ

Παράδειγμα.1.
Για τις διάφορες τιμές του \lambda \in \rr, να υπολογισθεί το παρακάτω όριο:

    \[\lim_{x\to -\infty}\Big((\lambda^{2}-4)x^{3}+(\lambda +2)x-3\Big).\]

Συνέχεια ανάγνωσης ΔΙΕΡΕΥΝΗΣΗ ΠΑΡΑΜΕΤΡΟΥ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΟΡΙΟΥ ΣΤΟ ΑΠΕΙΡΟ

ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΜΕΙΟΝ ΑΠΕΙΡΟ

Για τον υπολογισμό, ορίου στο άπειρο, αθροίσματος ή διαφοράς δύο ρητών συναρτήσεων, υπολογίζουμε στο άπειρο το όριο κάθε ρητής συνάρτησης ξεχωριστά. Στην περίπτωση που προκύψει η απροσδιόριστη μορφή άπειρο μείον άπειρο τότε κάνουμε ομώνυμα τα κλάσματα και υπολογίζουμε το όριο στο άπειρο της νέας ρητής συνάρτησης που προκύπτει.
Συνέχεια ανάγνωσης ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΜΕΙΟΝ ΑΠΕΙΡΟ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Έστω η ρητή συνάρτηση

    \[Q(x)=\frac{\alpha_{\nu}x^{\nu}+\alpha_{\nu-1}x^{\nu -1}+\cdots +\alpha_{1}x+\alpha_{0} }{\beta_{\mu}x^{\mu}+\beta_{\mu-1}x^{\mu -1}+\cdots +\beta_{1}x+\beta_{0} }\quad \text{με} \, \alpha_{\nu},\beta_{\mu}\neq 0.\]

Για να υπολογίσουμε τα όριο στο άπειρο, της ρητής συνάρτησης, \displaystyle\lim_{x\to +\infty}Q(x) και \displaystyle\lim_{x\to-\infty}Q(x), υπολογίζουμε το όριο στο άπειρο του λόγου του μεγιστοβάθμιων όρων δηλαδη:

    \[\lim_{x\to +\infty}Q(x)=\lim_{x\to +\infty}\frac{\alpha_{\nu}x^{\nu}}{\beta_{\mu}x^{\mu}}=\lim_{x\to +\infty}\frac{\alpha_{\nu}}{\beta_{\mu}}\cdot x^{\nu-\mu}\]

και

    \[\lim_{x\to -\infty}Q(x)=\lim_{x\to -\infty}\frac{\alpha_{\nu}x^{\nu}}{\beta_{\mu}x^{\mu}}=\lim_{x\to -\infty}\frac{\alpha_{\nu}}{\beta_{\mu}}\cdot x^{\nu-\mu}\]

Συνέχεια ανάγνωσης ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΕ ΟΡΙΑ ΠΑΡΑΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Για να βρούμε το όριο \displaystyle\lim_{x\to x_{0}}f(x) όπου η f(x) είναι μια παραμετρική συνάρτηση, υπολογίζουμε το όριο με τους γνωστούς τρόπους και διακρίνουμε περιπτώσεις για τις διάφορες τιμές των παραμέτρων.
Συνέχεια ανάγνωσης ΔΙΕΡΕΥΝΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΕ ΟΡΙΑ ΠΑΡΑΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΜΕΙΟΝ ΑΠΕΙΡΟ

‘Εστω για τον υπολογισμο του ορίου \displaystyle\lim_{x \to x_{0}}\Big(f(x)-g(x)\Big) προκύπτει η απροσδιόριστη μορφή άπειρο μείον άπειρο, \infty - \infty, τότε εκτελούμε τις πράξεις ώστε να προκύψει όριο της μορφής \dfrac{\alpha}{0} με \alpha \neq 0.
Συνέχεια ανάγνωσης ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΜΕΙΟΝ ΑΠΕΙΡΟ

ΟΡΙΟ ΚΛΑΣΜΑΤΟΣ ΜΕ ΟΡΙΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΗΔΕΝ ΚΑΙ ΟΡΙΟ ΑΡΙΘΜΗΤΗ ΔΙΑΦΟΡΟ ΤΟΥ ΜΗΔΕΝΟΣ

Για να υπολογίσουμε ενα όριο της μορφής \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)} με \displaystyle\lim_{x\to x_{0}}f(x)=l \neq 0 και\displaystyle\lim_{x\to x_{0}}g(x)=0
Tότε βρίσκουμε το πρόσημο της g(x) κοντά στο x_{0}
και το ζητούμενο όριο θα μας κανει +\infty ή -\infty.
Δηλαδή

  •   \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)}=+\infty στην περίπτωση που l ομόσημο με το πρόσημο της g(x) κοντά στο x_{0}
  • \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)}=-\infty στην περίπτωση που l ετερόσημο με το πρόσημο της g(x) κοντά στο x_{0}

Συνέχεια ανάγνωσης ΟΡΙΟ ΚΛΑΣΜΑΤΟΣ ΜΕ ΟΡΙΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΗΔΕΝ ΚΑΙ ΟΡΙΟ ΑΡΙΘΜΗΤΗ ΔΙΑΦΟΡΟ ΤΟΥ ΜΗΔΕΝΟΣ

ΟΡΙΟ ΤΗΣ ΜΟΡΦΗΣ ΕΝΑ ΠΡΟΣ ΜΗΔΕΝ

  • Αν είναι \displaystyle\lim_{x\to x_{0}}f(x) =0 και f(x) > 0 κοντά στο x_{0}, τότε

        \[\displaystyle\lim_{x\to x_{0}}\dfrac{1}{f(x)} =+\infty\]

  • Αν είναι \displaystyle\lim_{x\to x_{0}}f(x) =0 και f(x) < 0 κοντά στο x_{0}, τότε

        \[\displaystyle\lim_{x\to x_{0}}\dfrac{1}{f(x)} =-\infty\]

Συνέχεια ανάγνωσης ΟΡΙΟ ΤΗΣ ΜΟΡΦΗΣ ΕΝΑ ΠΡΟΣ ΜΗΔΕΝ