Αρχείο ετικέτας ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΣΥΜΠΤΩΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Η ευθεία y=\lambda x+\beta είναι ασύμπτωτη της γραφικής παράστασης της f στο +\infty αν και μόνο αν:

    \[\lim_{x \to +\infty}\frac{f(x)}{x}=\lambda\in\rr \quad \text{και} \quad \lim_{x \to +\infty}[f(x)=\lambda x]=\beta\in\rr\]

αντιστοίχως στο -\infty

    \[\lim_{x \to -\infty}\frac{f(x)}{x}=\lambda\in\rr \quad \text{και} \quad \lim_{x \to -\infty}[f(x)=\lambda x]=\beta\in\rr\]

Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΑΣΥΜΠΤΩΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΠΑΡΑΜΕΤΡΟΥ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΟΡΙΟΥ ΣΤΟ ΑΠΕΙΡΟ

Παράδειγμα.1.
Για τις διάφορες τιμές του \lambda \in \rr, να υπολογισθεί το παρακάτω όριο:

    \[\lim_{x\to -\infty}\Big((\lambda^{2}-4)x^{3}+(\lambda +2)x-3\Big).\]

Συνέχεια ανάγνωσης ΔΙΕΡΕΥΝΗΣΗ ΠΑΡΑΜΕΤΡΟΥ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΟΡΙΟΥ ΣΤΟ ΑΠΕΙΡΟ

ΣΥΝΘΕΤΟ ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΡΙΖΙΚΑ

Παράδειγμα.1.
Να υπολογισθεί το όριο στο συν άπειρο

    \[\lim_{x\to +\infty}\Big(\sqrt{x^{2}+1}+\sqrt{4x^{2}+5x+1}-3x+1\Big).\]

Συνέχεια ανάγνωσης ΣΥΝΘΕΤΟ ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΡΙΖΙΚΑ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΡΙΖΙΚΑ

Για τον υπολογισμό του ορίου στο άπειρο, συναρτήσεων που περιέχουν ριζικά, δηλαδή της μορφής:

    \[\sqrt[\nu]{f(x)}\pm g(x) \, \,\text{ή} \,\, \sqrt[\nu]{f(x)}\pm \sqrt[\mu]{g(x)} \quad \text{με} \,\,\nu,\mu \in \mathbb{N}, \, \,\nu,\mu \geq 2.\]

Δουλεύουμε ως εξής:
Συνέχεια ανάγνωσης ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΡΙΖΙΚΑ

ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.1.
Αν \displaystyle\lim_{x\to 1}f(x)=-\infty, να υπολογισθεί το όριο

    \[\lim_{x\to 1} \Big[ \sqrt{4f^{2}(x)-3f(x)+2}+f(x)\Big]\]

Συνέχεια ανάγνωσης ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ ΚΑΙ ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

Παράδειγμα.
Δίνεται η συνάρτηση f:\RR\rightarrow\RR για την οποία ισχύει

    \[\orio{x}{0}{\dfrac{f(x)-\hm x}{\sqrt{x+1}-1}}=6\]

Να υπολογίσετε τα όρια:

    \[ \newcounter{afa} \newcommand{\afa }{% \stepcounter{afa}% %exartate \alph{tbc})\ } %exartate \Alph{tbc})\ } \roman{afa})\ } \begin{tabular}{ l l l} \afa $\,\,\orio{x}{0}{f(x)}$ & \afa $\,\,\orio{x}{0}{\dfrac{f(x)}{x}}$ & \afa $\,\,\orio{x}{0}{\dfrac{xf(x)-\hm^2 x}{\sqrt{x^2+4}-2}}$\\ \end{tabular} \]

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΑ ΟΡΙΑ ΚΑΙ ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ

Όταν σε ένα όριο άρρητης συνάρτησης της μορφής \dfrac{0}{0}, εμφανίζονται παράστασεις της μορφής

    \[\sqrt[\nu]{f(x)}\pm\sqrt[\mu]{g(x)}\pm\lambda\]

τότε εργαζόμαστε ως εξής:

  • Διασπάμε τον αριθμό \lambda σε δύο αριθμούς. Οι αριθμοί αυτοί είναι αντίθετοι των τιμών που θα προκύψουν από τις \sqrt[\nu]{f(x)} και \sqrt[\mu]{g(x)}, αν θέσουμε σε αυτές όπου το x το x_{o}.
  • Χωρίζουμε το κλάσμα σε δύο κλάσματα που το καθένα περιέχει από μία ρίζα και τον αντίστοιχο αριθμό.
  • Κάθε κλάσμα είναι της μορφής \dfrac{0}{0} και πολλαπλασιάζουμε τους όρους με την κατάλληλη συζυγή παράσταση.
  • Συνέχεια ανάγνωσης ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ

    ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ

    Όταν έχουμε όριο άρρητης συνάρτησης (περιέχει ρίζες) της μορφής \dfrac{0}{0}, \, τότε πολλαπλασιάζουμε τον αριθμητή και τον παρονομαστή με τη συζυγή παράσταση του όρου (ή των όρων) που περιέχει ρίζα. Στην συνέχεια παραγοντοποιούμε (αν χρειαστεί) και απλοποιούμε.
    Συνέχεια ανάγνωσης ΟΡΙΟ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ