Αρχείο ετικέτας ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ


Έστω μια συνάρτηση με συνεχή πρώτη παράγωγο και 1-1. Για τον υπολογισμό του ορισμένου ολοκληρώματος της αντίστροφης συνάρτησης της μορφής

    \[\int_{\alpha }^{\beta} f^{-1}(x)\, dx\]

όπου ο υπολογισμός της αντίστροφης είναι αδύνατος, ακολουθούμε τα παρακάτω βήματα:

  • θέτουμε u =f^{-1}(x)\Rightarrow   f(u) = x, οπότε f'(u)du = dx
  • Βρίσκουμε τα άκρα ολοκλήρωσης:

  • για x=\alpha έχουμε: f(u) = \alpha \Leftrightarrow f(u) = f(\gamma)\Leftrightarrow u = \gamma.
  • για x=\beta έχουμε: f(u) = \beta \Leftrightarrow f(u) = f(\delta)\Leftrightarrow u = \delta.
  •     \[\int_{\alpha }^{\beta} f^{-1}(x)\, dx =\int_{\gamma}^{ \delta} u \cdot f'(u)\, du\]

    Και συνεχίζουμε την επίλυση με τη μέθοδο της παραγοντικής ολοκλήρωσης

    Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΕΡΙΟΔΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΡΤΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

    ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΕΡΙΤΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

    Στα ολοκληρώματα ρητής ή άρρητηςσυνάρτησης όπου η μεταβλητή x εμφανίζεται μόνο ως x^{2} αρκετές φορές χρειάζεται να κάνουμε την τριγωνομετρική αντικατάσταση του ημιτόνου ή της εφαπτομένης αξιοποιόντας την ταυτότητα \hm^{2}x+ \syn^{2}x =1.

    Τριγωνομετρική αντικατάσταση του ημιτόνου


    Για υπολογίσουμε ένα ολοκλήρωμα της μορφής

        \[\int_{\kappa}^{\lambda} f\Big( x, \sqrt{\beta^{2} -\alpha^{2}x^{2}}\Big)\, dx.\]

    Χρησιμοποιούμε την τριγωνομετρική αντικατάσταση του ημιτόνου δηλαδή:

        \[\text{Θέτουμε } \quad x = \dfrac{\beta}{\alpha}\cdot \hm u \quad \text{με} \quad u \in \big[ -\dfrac{\pi}{2}, \dfrac{\pi}{2}\big].\]


    Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

    ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ


    Για την ολοκλήρώση τριγωνομετρικων συναρτήσεων της μορφής:

        \[\int_{\alpha}^{\beta} \hm^{\nu}x \cdot \syn^{\mu}x \,\, dx\]

    διακρίνουμε τις παρακάτω περιπτώσεις:

  • Αν το \hm x είναι υψωμένο σε περιττή δύναμη, τότε θέτουμε u = \syn x.
  • Αν το \syn x είναι υψωμένο σε περιττή δύναμη, τότε θέτουμε u = \hm x.
  • Αν το \hm x και το \syn x είναι υψωμένο σε άρτια δύναμη, τότε χρησιμοποιούμε τους τύπους του αποτετραγωνισμού
    \syn^{2}x =\dfrac{1+\syn2x}{2} και \hm^{2}x =\dfrac{1-\syn2x}{2}.
  • Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΣΥΝΔΥΑΣΜΟΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΠΑΡΑΓΟΝΤΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ

    Παράδειγμα.1.
    Να λυθεί το ολοκλήρωμα:

        \[\int_{0}^{\frac{\pi}{2}} e^{^{\hm x}}\cdot \hm^{2}x \cdot \syn x \, dx.\]

    Λύση

    Στο ολοκλήρωμα:

        \[\int_{0}^{\frac{\pi}{2}} e^{^{\hm x}}\cdot \hm^{2}x \cdot \syn x \, dx.\]

    Θέτουμε \hm x =u.
    Οπότε:

    Συνέχεια ανάγνωσης ΣΥΝΔΥΑΣΜΟΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΠΑΡΑΓΟΝΤΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ

    ΟΛΟΚΛΗΡΩΣΗ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

    Για την ολοκλήρωση άρρητης συναρτήσης, δηλαδή για ολοκληρώματα που περιέχουν ν-οστη ρίζα της μορφής:

        \[\int_{\alpha}^{\beta} f\Bigg(x,\sqrt[\nu]{g(x)}\Bigg) \,\, dx\]

    Χρησιμοποιούμε τη μέθοδο της αντικατάστασης θέτοντας:

        \[\sqrt[\nu]{g(x)} = u \Rightarrow g(x)=u^{\nu} \quad (1.)\]

    Οπότε έχουμε:

        \[g'(x)\, dx= \nu u^{\nu -1}\, du\]

    Η μέθοδος την αντικατάστασης εφαρμόσιμη και έχει αξία όταν είναι εφικτή η επίλυση της εξίσωσης (1.)
    ως προς x.

    Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΣΗ ΑΡΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΟΥ ΠΕΡΙΕΧΕΙ ΔΥΝΑΜΕΙΣ ΠΡΩΤΟΒΑΘΜΙΩΝ ΠΟΛΥΩΝΥΜΩΝ

  • Στις περιπτωσεις υπολογισμου ορισμένου ολοκληρώματος που που περιέχει πρωτοβάθμιο πολυώνυμο της μορφής:
    \dint_{\alpha}^{\beta} f\big ( x, (\kappa x +\lambda)^{2}\big) \,dx \,\, \text{ή} \,\, \dint_{\alpha}^{\beta} f\big ( x, (\kappa x +\lambda)^{3}\big) \,dx, \, \kappa \in \rr^{*}
    εκτελουμε τις γνωστές ταυτότητες.
  • Παράδειγμα.1.
    Να υπολογισθεί το ολοκλήρωμα:

        \[\int_{0}^{1}(x-1)^{2}\cdot (3x+2) dx.\]

    Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΟΥ ΠΕΡΙΕΧΕΙ ΔΥΝΑΜΕΙΣ ΠΡΩΤΟΒΑΘΜΙΩΝ ΠΟΛΥΩΝΥΜΩΝ

    ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ – ΜΕΘΟΔΟΣ ΤΗΣ ΑΛΛΑΓΗΣ ΜΕΤΑΒΛΗΤΗΣ


    Η μέθοδος της ολοκληρωσης με αντικατατάσταση ( ή αλλαγη μεταβλητής ) περιγράφεται από τον τύπο:

        \[\int_{\alpha}^{\beta} f\Big( g(x)\Big) \cdot g'(x) dx = \int_{u_{1}}^{u_{2}} f(u) du.\]

    όπου f και g' συνεχείς συναρτήσεις με u = g(x), \, du =g'(x) dx και u_{1}= g(\alpha), u_{2} =g(\beta).

    Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ – ΜΕΘΟΔΟΣ ΤΗΣ ΑΛΛΑΓΗΣ ΜΕΤΑΒΛΗΤΗΣ