Αρχείο ετικέτας ΟΛΟΚΛΗΡΩΜΑ

Ο ΑΡΙΘΜΗΤΗΣ ΕΙΝΑΙ Η ΠΑΡΑΓΩΓΟΣ ΤΟΥ ΠΑΡΟΝΟΜΑΣΤΗ

Στο ορισμένο ολοκλήρωμα ρητής συνάρτησης όπου ο αριθμητής είναι η παράγωγος του παρονομαστη γράφουμε

    \[\int_{\alpha}^{\beta}\dfrac{P(x)}{Q(x)}dx =\]

    \[\int_{\alpha}^{\beta}\dfrac{Q'(x)}{Q(x)}dx =\]

    \[\int_{\alpha}^{\beta}\Big(\ln \big|{Q(x)}\big|\Big)'dx =\]

    \[\Big[\ln \big|{Q(x)}\big|\Big]_{\alpha}^{\beta}\]


Παράδειγμα
Να υπολογισθεί το ολοκλήρωμα

    \[Ι = \int_{0}^{1} \dfrac{2x+3}{x^{2}+3x+5}dx.\]

Συνέχεια ανάγνωσης Ο ΑΡΙΘΜΗΤΗΣ ΕΙΝΑΙ Η ΠΑΡΑΓΩΓΟΣ ΤΟΥ ΠΑΡΟΝΟΜΑΣΤΗ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΤΟ ΤΕΧΝΑΣΜΑ ΤΗΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ ΤΗΣ ΕΚΘΕΤΙΚΗΣ

Στο ορισμένο ολοκλήρωμα που ακολουθεί, θα υπολογισθεί εφαρμόζοντας την παραγοντική ολοκλήρωση, κάνοντας χρήση του τεχνάσματος της προσθαφαίρεσης της εκθετικής συνάρτησης

    \[{\bf{e^{x}}}.\]


Παράδειγμα
Να υπολογισθεί το ολοκλήρωμα

    \[Ι = \int_{0}^{1} \dfrac{\ln (1+e^{x})}{e^{x}}dx.\]

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΤΟ ΤΕΧΝΑΣΜΑ ΤΗΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ ΤΗΣ ΕΚΘΕΤΙΚΗΣ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΣΕ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕ ΑΝΑΓΩΓΙΚΟ ΤΥΠΟ

Στις περιπτώεις που έχουμε αναγωγικό τύπο στο ορισμένο ολοκλήρωμα εφαρμόζουμε την μέθοδο της παραγοντικής ολοκλήρωσης, όπως στο παράδειγμα που ακολουθεί:
Παράδειγμα.
Έστω το ορισμένο ολοκλήρωμα:

    \[I_{\nu} =\int_{0}^{1} x^{\nu} \cdot e^{x} \, dx \quad \text{με } \,\,\, \nu \in \mathbb{N^{*}}\]


i) Να αποδείξετε ότι: I_{\nu} =e -\nu I_{\nu-1} για κάθε \nu \geq 2.
ii) Να υπολογίσετε τα ολοκληρώματα:
\quad \quad \quad \dint_{0}^{1} xe^{x}\, dx και \dint_{0}^{1} x^{4}e^{x}\, dx.

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΣΕ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕ ΑΝΑΓΩΓΙΚΟ ΤΥΠΟ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΣΥΝΘΕΤΕΣ ΠΕΡΙΠΤΩΣΕΙΣ

Η παραγοντική ολοκλήρωση είναι σημαντική μέθοδος για τον υπολογισμό σύνθετων περιπτώσεων ολοκληρωμάτων

    \[ \begin{tabular}{r l r r r c r} $ 1.)\dint_{\frac{\pi}{6}}^{\frac{\pi}{2}}\dfrac{x}{\hm^{2} x}\, dx.$        & &           &  	2.)$\dint_{0}^{\frac{\pi}{3}}\dfrac{x-\hm x}{\syn^{2}x}dx$	           &    &   &						\\\\ 	 &                   &  	 & 	     &           &		&						\\\\  3.)$\dint_{1}^{4}\dfrac{\ln x}{\sqrt{x}}\, dx$	 &                   &  	 & 	4.)$ \dint_{\frac{1}{e}}^{1}\dfrac{\ln x}{x^{2}}dx.$    &           &		&						\\  \end{tabular}\\ \]

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΣΥΝΘΕΤΕΣ ΠΕΡΙΠΤΩΣΕΙΣ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΚΘΕΤΙΚΗ ΕΠΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ

Για τα ολοκληρώματα της μορφής

    \[\int_{\alpha}^{\beta} e^{\kappa x+\lambda}\hm(\mu x+\nu )dx \,\,\, \text{ή} \int_{\alpha}^{\beta} e^{\kappa x+\lambda}\syn(\mu x+\nu)dx\]

όπου \kappa,  \mu\in\rr^*μπορούν να υπολογιστούν με τη βοήθεια της παραγοντικής ολοκλήρωσης, γράφοντας είτε τον εκθετικό είτε το τριγωνομετρικό όρο ως παράγωγο μιας αρχικής του. Συγκεκριμένα:

    \[ e^{\kappa x+\lambda}=\bigg(\dfrac{ e^{\kappa x+\lambda}}{\kappa}\bigg)'\]

    \[ \hm(\mu x+\nu)=\bigg(-\dfrac{\syn(\mu x+\nu)}{\mu}\bigg)'\]

    \[ \syn(\mu x+\nu)=\bigg(\dfrac{\hm(\mu x+\nu)}{\mu}\bigg)' \]

Συνήθως σε ολοκληρώματα αυτής της μορφής εφαρμόζουμε την παραγοντική ολοκλήρωση περισσότερες απο μία φορές και εμφανίζεται ξανά το αρχικό ολοκλήρωμα I. Εξισώνουμε τότε το I με το τελικό αποτέλεσμα και λύνουμε ως προς I.

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΚΘΕΤΙΚΗ ΕΠΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΠΟΛΥΩΝΥΜΙΚΗΣ ΕΠΙ ΛΟΓΑΡΙΘΜΙΚΗΣ

Τα ολοκληρώματα της μορφής γινομένου, πολυωνυμικής επι λογαριθμικής

    \[\int_{\alpha}^{\beta} P(x)\ln(\kappa x)dx,\]

με \kappa\in\rr^* και P(x) ένα πολυώνυμο, μπορούν να υπολογιστούν με τη βοήθεια της παραγοντικής ολοκλήρωσης, γράφοντας το πολυώνυμο ως παράγωγο μιας αρχικής του.

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΠΟΛΥΩΝΥΜΙΚΗΣ ΕΠΙ ΛΟΓΑΡΙΘΜΙΚΗΣ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΠΟΛΥΩΝΥΜΙΚΗ ΕΠΙ ΗΜΙΤΟΝΟ ΣΥΝΗΜΙΤΟΝΟ

Έστω \kappa\in\rr^* και P(x) ένα πολυώνυμο. Ολοκληρώματα της μορφής

    \[\int_{\alpha}^{\beta} P(x)\hm(\kappa x+\lambda)dx \quad \text{ή} \quad \int_{\alpha}^{\beta} P(x)\syn(\kappa x+\lambda)dx\]

μπορούν να υπολογιστούν με τη βοήθεια της παραγοντικής ολοκλήρωσης, γράφοντας το τριγωνομετρικό όρο ως παράγωγο μιας αρχικής του. Συγκεκριμένα είναι

    \[ \hm(\kappa x+\lambda)=\Bigg(-\dfrac{\syn(\kappa x+\lambda)}{\kappa}\Bigg)' \]

ΚΑΙ

    \[\syn(\kappa x+\lambda)=\Bigg(\dfrac{\hm(\kappa x+\lambda)}{\kappa}\Bigg)' \]

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΠΟΛΥΩΝΥΜΙΚΗ ΕΠΙ ΗΜΙΤΟΝΟ ΣΥΝΗΜΙΤΟΝΟ

ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΠΟΛΥΩΝΥΜΙΚΗ ΕΠΙ ΕΚΘΕΤΙΚΗ

Η μέθοδος της ολοκλήρωσης κατά παράγοντες ή παραγοντική ολοκλήρωση για το ορισμένο ολοκλήρωμα εκφράζεται απο τον τύπο:

    \[\int_{\alpha}^{\beta} f(x)g'(x)dx=\Big{[}f(x)g(x)\Big{]}^{\beta}_{\alpha}-\int_{\alpha}^{\beta} f'(x)g(x)dx\]

όπου f' και g' είναι συνεχής συναρτήσεις στο [\alpha,\beta].


Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΠΟΛΥΩΝΥΜΙΚΗ ΕΠΙ ΕΚΘΕΤΙΚΗ

ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΣΧΕΣΗ ΠΟΥ ΠΕΡΙΕΧΕΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ


Ξέρουμε ότι: το ορισμένο ολοκλήρωμα \dint_{\alpha}^{\beta} f(x) dx είναι σταθερός αριθμός.
Δηλαδή \dint_{\alpha}^{\beta} f(x) dx =c, \quad c\in \rr, οπότε θα ισχύει: \bigg(\dint_{\alpha}^{\beta} f(x) dx\bigg)'=0.
Συνεπώς στην περίπτωση που έχουμε μια ισότητα I η οποία περιέχει τις f(x), f(x) και το \dint_{\alpha}^{\beta} f(x) dx και θέλουμε να βρούμε την f τότε:

  • Θέτουμε c=\dint_{\alpha}^{\beta} f(x) dx \quad (1.)
  • Αντικαθιστούμε στη σχέση I το \dint_{\alpha}^{\beta} f(x) dx με το c
  • Βρίσκουμε την συνάρτηση f συναρτήσει του c και
  • Την αντικαθιστούμε στη σχέση (1).

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΣΧΕΣΗ ΠΟΥ ΠΕΡΙΕΧΕΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΠΕΡΙΕΧΕΙ ΑΠΟΛΥΤΗ ΤΙΜΗ

Για να υπολογίσουμε το ορισμένο ολοκλήρωμα μιας συνάρτησης f που περιέχει απόλυτη τιμή, κάνουμε χρήση του ορισμού της απόλυτης τιμής και γράφουμε τον τύπο της f χωρίς το απόλυτο. Τότε η f γίνεται πολλαπλού τύπου και μπορούμε να υπολογίσουμε το ορισμένο ολοκλήρωμα.

Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΥ ΠΕΡΙΕΧΕΙ ΑΠΟΛΥΤΗ ΤΙΜΗ