Αρχείο ετικέτας ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΥΠΑΡΞΗ ΜΟΝΑΔΙΚΗΣ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΟΛΟ ΤΙΜΩΝ

Στις ασκήσεις που αναζητάμε την ύπαρξη μοναδικής ρίζας μιας συνάρτησης, και δεν γνωρίζουμε συγκεκριμένο διάστημα στο οποίο θα μπορούσαμε να εφαρμόσουμε, κάποιο απο τα υπαρξιακά θεωρήματα Bolzano, Rolle τότε εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ΜΟΝΑΔΙΚΗΣ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΟΛΟ ΤΙΜΩΝ

ΣΥΝΟΛΟ ΤΙΜΩΝ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ

Έστω f: A \to \rr, μια συνεχής συνάρτηση. Για να βρούμε το σύνολο τιμών της συνάρτησης f, εργαζόμαστε ως εξής

  • Μελετάμε την f ως προς τη μονοτονία.
  • Βρίσκουμε τα διαστήματα \Delta_{1},\Delta_{2},\cdots του πεδίου ορισμού της συνάρτησης f, σε καθένα απο τα διαστήματα η οποία διατηρεί μονοτονία.

Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

Αν έχουμε ως δεδομένο μια ανισότητα της μορφής

    \[f(x)\leq g(x) \quad \text{ή} \quad f(x)\geq g(x)\]

για κάθε x\in\Delta και το ζητούμενο είναι να αποδείξουμε μια ισότητα τότε εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό ελάχιστο \mu>0 τότε ισχύει ότι f(x)>0 για κάθε x\in A.
  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό μέγιστο M<0 τότε ισχύει ότι f(x)<0 για κάθε x\in A.
  • Συνέχεια ανάγνωσης ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

    ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ

    Για να αποδείξουμε μια ανισότητα της μορφής

        \[A(x)\geq B(x) \quad \text{ή} \quad A(x)\leq B(x)\]

    μπορούμε να εργαστούμε ως εξής:

    • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
    • Θέτουμε το πρώτο μέλος ως συνάρτηση f(x), οπότε η ανισότητα παίρνει τη μορφή

          \[f(x)\geq0 \quad \text{ή} \quad f(x)\leq0\]

    • Μελετάμε την f ως προς τη μονοτονία και τα ακρότατα και διαπιστώνουμε ότι παρουσιάζει ολικό ελάχιστο ή ολικό μέγιστο το 0, οπότε αντίστοιχα θα ισχύει:

          \[f(x)\geq0 \quad \text{ή} \quad f(x)\leq0\]

    Συνέχεια ανάγνωσης ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ

    ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΟΤΗΤΕΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    Για να αποδείξουμε μια ανισότητα της μορφής f(x)\geq g(x) με f, g παραγωγίσιμες συναρτησεις για καθε x\in\Delta εργαζόμαστε ως εξής:

    • Μεταφέρουμε όλους τους όρους στο ένα μέλος και η ανίσωση γίνεται f(x)-g(x)\geq0

    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΟΤΗΤΕΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    Μια ανίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)\leq 0 ή f(x)\geq 0
  • Με τη μέθοδο των παραγώγων αποδεικνύουμε ότι η f είναι γνησίως μονότονη.
  • Βρίσκουμε με δοκιμές μία ρίζα \rho της εξίσωσης f(x)=0, οπότε η ανίσωση γίνεται f(x)\leq f(\rho) ή f(x)\geq f(\rho)
  • Εκμεταλλευόμαστε τη μονοτονία της f.
  • π.χ. αν

    Rendered by QuickLaTeX.com

    ή

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    Για να λύσουμε εξισώσεις παραγωγίσιμων συναρτήσεων με τη βοήθεια της μονοτονίας διακρίνουμε τις παρακάτω περιπτώσεις:
    Κάθε γνησίως μονότονη συνάρτηση έχει το πολύ μία ρίζα
    Χρησιμοποιώντας την παραπάνω πρόταση μπορούμε να λύσουμε μια εξίσωση ως εξής:
    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΕΞΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ

    Παράδειγμα.
    Δίνεται η συνάρτηση f(x)=2x^3+3\alpha x^2+6x-4 \quad \text{με} \,\alpha\in\rr.
    Να βρείτε για ποιές τιμές του \alpha η f είναι γνησίως αύξουσα στο \rr.
    Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΓΝΗΣΙΩΣ ΜΟΝΟΤΟΝΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΕΥΡΕΣΗ ΜΟΝΟΤΟΝΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΠΑΡΑΓΩΓΟΥ

    Αν δεν μπορούμε να βρούμε το πρόσημο της πρωτης παραγώγου f', τότε υπολογίζουμε τη το πρόσημο της δεύτερης παραγώγου. Στην περίπτωση που αυτό δεν είναι εφικτό βρίσκουμε τις παραγώγους ανώτερης τάξης ως εκείνης που μπορούμε να βρούμε το πρόσημο.
    Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΜΟΝΟΤΟΝΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΠΑΡΑΓΩΓΟΥ