Αρχείο ετικέτας ΜΟΝΟΤΟΝΙΑ ΠΑΡΑΓΩΓΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΚΥΡΤΗ – ΚΟΙΛΗ ΣΥΝΑΡΤΗΣΗ

Έστω μια συνάρτηση f συνεχής σε ένα διάστημα \Delta και παραγωγίσιμη στο εσωτερικό του \Delta. Θα λέμε ότι:

  • Η συνάρτηση f στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο \Delta αν η f' είναι γνησίως αύξουσα στο εσωτερικό του \Delta.
  • Η συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο \Delta αν η f' είναι γνησίως φθίνουσα στο εσωτερικό του \Delta.
  • ΘΕΩΡΗΜΑ
    Έστω μια συνάρτηση συνεχής σε ένα διάστημα \Delta και δύο φορές παραγωγίσιμη στο εσωτερικό του \Delta.

  • Αν f''(x)>0 για κάθε εσωτερικό σημείο x του \Delta, τότε η f είναι κυρτή στο \Delta.
  • Αν f''(x)<0 για κάθε εσωτερικό σημείο x του \Delta, τότε η f είναι κοίλη στο \Delta.
  • Συνέχεια ανάγνωσης ΚΥΡΤΗ – ΚΟΙΛΗ ΣΥΝΑΡΤΗΣΗ

    ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ

    Για να αποδείξουμε μια ανισότητα της μορφής

        \[A(x)\geq B(x) \quad \text{ή} \quad A(x)\leq B(x)\]

    μπορούμε να εργαστούμε ως εξής:

    • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
    • Θέτουμε το πρώτο μέλος ως συνάρτηση f(x), οπότε η ανισότητα παίρνει τη μορφή

          \[f(x)\geq0 \quad \text{ή} \quad f(x)\leq0\]

    • Μελετάμε την f ως προς τη μονοτονία και τα ακρότατα και διαπιστώνουμε ότι παρουσιάζει ολικό ελάχιστο ή ολικό μέγιστο το 0, οπότε αντίστοιχα θα ισχύει:

          \[f(x)\geq0 \quad \text{ή} \quad f(x)\leq0\]

    Συνέχεια ανάγνωσης ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ