Αρχείο ετικέτας ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ

ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL

Για τον ορισμό της παραγώγου ξέρουμε ότι ισοδύναμα ισχύει:
Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη στο x_{0}\in A_{f}, αν υπάρχει και είναι πραγματικός αριθμός το παρακάτω όριο:

    \[\lim_{h\to 0}\dfrac{f(x_{0}+h)-f(x_{0})}{h}.\]

Συνέχεια ανάγνωσης ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL


Παράδειγμα.1

Έστω f:\rr\to\rr μια συνάρτηση παραγωγίσιμη με f(0)=f'(0)=0, \, f''(0)=2.

Αν:

    \[ g(x)=\left\{ 		\begin{tabular}{ll} 			$\dfrac{f(x)}{x}, \quad x\neq 0$ \\\\ 			$ 0, \quad x=0$  		\end{tabular} 	\right. \]

i_) Να βρείτε την g'(0).
ii_) Να δείξετε ότι η g' είναι συνεχής στο x_{0}=0.
Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΚΑΝΟΝΑΣ DE L HOSPITAL

Η ΣΩΣΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

Η σωστή χρήση του κανονα του DE L HOSPITAL απαιτεί μεγάλη προσοχή.
Αν \displaystyle\lim_{x \to x_0}f(x)=0 και \displaystyle\lim_{x \to x_0}g(x)=0
όπου x_0\in\rr\cup\{-\infty,+\infty\} και υπάρχει το όριο \displaystyle\lim_{x \to x_0}\frac{f'(x)}{g'(x)} πεπερασμένο ή άπειρο τότε:

    \[\lim_{x \to x_0}\frac{f(x)}{g(x)}=\lim_{x \to x_0}\frac{f'(x)}{g'(x)}\]

Συνέχεια ανάγνωσης Η ΣΩΣΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

ΚΑΝΟΝΕΣ DE L HOSPITAL ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Να βρείτε τους πραγματικούς αριθμούς \alpha,\beta και \gamma ώστε να ισχύει

    \[\lim_{x \to 1}\frac{\alpha e^{2x}+\beta x+\gamma}{(x-1)^2}=2\]

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΕΙΣ ΤΗ ΜΗΔΕΝΙΚΗ

Αν ένα όριο

    \[\lim_{x \to x_0}[f(x)]^{g(x)}\]

έχει την απροσδιόριστη άπειρο εις τη μηδενικη (\pm \infty)^{0}, τότε για να άρουμε την απροσδιοριστια του ορίου και να υπολογίσουμε την τιμή του ορίου εργαζόμαστε ως εξής:

    \begin{align*} &\lim_{x \to x_0}[f(x)]^{g(x)}=\\\\ &\lim_{x \to x_0}e^{\ln [f(x)]^{g(x)}}=\\\\ &\lim_{x \to x_0}e^{g(x)\ln f(x)}. \end{align*}

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΕΙΣ ΤΗ ΜΗΔΕΝΙΚΗ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΕΝΑ ΕΙΣ ΤΗΝ ΑΠΕΙΡΟ

Αν ένα όριο

    \[\lim_{x \to x_0}[f(x)]^{g(x)}\]

έχει την απροσδιόριστη μορφή ένα εις την άπειρο 1^{\pm \infty}, τότε για να άρουμε την απροσδιοριστια του ορίου και να υπολογίσουμε την τιμή του ορίου εργαζόμαστε ως εξής:

    \begin{align*} &\lim_{x \to x_0}[f(x)]^{g(x)}=\\\\ &\lim_{x \to x_0}e^{\ln [f(x)]^{g(x)}}=\\\\ &\lim_{x \to x_0}e^{g(x)\ln f(x)}. \end{align*}

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΕΝΑ ΕΙΣ ΤΗΝ ΑΠΕΙΡΟ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΕΙΣ ΤΗΝ ΜΗΔΕΝΙΚΗ

Αν ένα όριο

    \[\lim_{x \to x_0}[f(x)]^{g(x)}\]

έχει την απροσδιόριστη μορφή μηδέν εις την μηδενική 0^0, τότε για να άρουμε την απροσδιοριστια του ορίου και να υπολογίσουμε την τιμή του ορίου εργαζόμαστε ως εξής:

    \begin{align*} &\lim_{x \to x_0}[f(x)]^{g(x)}=\\\\ &\lim_{x \to x_0}e^{\ln [f(x)]^{g(x)}}=\\\\ &\lim_{x \to x_0}e^{g(x)\ln f(x)}. \end{align*}

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΕΙΣ ΤΗΝ ΜΗΔΕΝΙΚΗ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ

Αν \displaystyle\lim_{x \to x_0}f(x)=0 και \displaystyle\lim_{x \to x_0}g(x)=0
όπου x_0\in\rr\cup\{-\infty,+\infty\} και υπάρχει το όριο \displaystyle\lim_{x \to x_0}\frac{f'(x)}{g'(x)} πεπερασμένο ή άπειρο τότε:

    \[\lim_{x \to x_0}\frac{f(x)}{g(x)}=\lim_{x \to x_0}\frac{f'(x)}{g'(x)}\]

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΜΗΔΕΝ ΠΡΟΣ ΜΗΔΕΝ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

Παράδειγμα
Έστω η συνεχής συνάρτηση f: \rr \to \rr, για την οποία ισχύει:

    \[\lim_{x\to 1}\dfrac{(x-1)\cdot f(x) +x^{2}-1}{\sqrt{x}-1} =12.\]

Να βρεθεί η τιμή f(1).

Συνέχεια ανάγνωσης ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

Παράδειγμα.1.
Να βρεθεί η τιμή της παραμέτρου \alpha \in \rr, ώστε να είναι συνεχής η συνάρτηση

    \[ f(x)=\left\{ 		\begin{tabular}{ll} 			$\dfrac{5x -10}{x+1-\sqrt{x+7}},$ & $x>2$ \\\\                         $ \alpha x^{2}-5x +4\alpha, $ &   $ x\leq 2$  		\end{tabular} 	\right. \]

Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ