Αρχείο ετικέτας ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

ΣΗΜΕΙΑ ΤΟΜΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΚΑΙ ΟΡΙΖΟΝΤΙΑΣ ΑΣΥΜΠΤΩΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Δίνεται η συνάρτηση f(x)=e^x\hm x+2010. Να αποδείξετε ότι η γραφική παράσταση της συνάρτησης, C_f, έχει οριζόντια ασύμπτωτη στο -\infty και ότι η γραφική παράσταση C_f τέμνει τη παραπάνω ασύμπτωτη σε άπειρα σημεία.
Συνέχεια ανάγνωσης ΣΗΜΕΙΑ ΤΟΜΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΚΑΙ ΟΡΙΖΟΝΤΙΑΣ ΑΣΥΜΠΤΩΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ

ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

Έστω ένα όριο της μορφής:

    \[\lim_{x\to x_{o}}(f(x)\cdot g(x))\]

όπου f,g συναρτήσεις για τις οποίες ισχύει:

  • \displaystyle\lim_{x\to x_{o}}f(x)=0, δηλαδή η f είναι «μηδενική» συνάρτηση.
  • |g(x)|\leq M, όπου M>0, δηλαδή η g είναι μια φραγμένη συνάρτηση.

Συνέχεια ανάγνωσης ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ