Αρχείο ετικέτας ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

ΘΕΜΑ ΠΑΡΑΜΕΤΡΙΚΟ ΟΡΙΟ – ΟΡΙΟ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Μ28/390

ΘΕΜΑ
28
Δίνεται η συνάρτηση f(x) =\dfrac{\alpha \cdot x^{2}+\alpha\cdot x +2}{x-1}, \,\, x>1.

-(α)- Να βρεθεί το \alpha \in \rr ώστε το \displaystyle\lim_{x\to +\infty}f(x) να είναι πραγματικός αριθμός.

-(β)- Για \alpha =0 και h(x) = \ln\Big(f(x)\Big) να βρεθούν τα παρακάτω όρια:

-(β.i)- \displaystyle\lim_{x\to 1}h(x)

-(β.ii)- \displaystyle\lim_{x\to +\infty}h(x)

-(γ)- Αν \alpha =0, να βρείτε το όριο

    \[\displaystyle\lim_{x\to +\infty}\dfrac{\big|f^{2}(x) -f(x)-1\big|-f(x)-1}{f^{2}(x)(x+\hm x)}.\]

-(δ)- Αν \alpha =0, και για την συνάρτηση g ισχύει:

    \[\Big| g(x)-f^{2}(x)-1\Big| <2f(x), \quad \text{για κάθε} \,\, x >1.\]

να δείξετε ότι ισχύει: \displaystyle\lim_{x\to +\infty}g(x)=1.

ΛΥΣΗ

Συνέχεια ανάγνωσης ΘΕΜΑ ΠΑΡΑΜΕΤΡΙΚΟ ΟΡΙΟ – ΟΡΙΟ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Μ28/390

Φ12/201

Φ7/200

Φ6/201

ΣΗΜΕΙΑ ΤΟΜΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΚΑΙ ΟΡΙΖΟΝΤΙΑΣ ΑΣΥΜΠΤΩΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Δίνεται η συνάρτηση f(x)=e^x\hm x+2010. Να αποδείξετε ότι η γραφική παράσταση της συνάρτησης, C_f, έχει οριζόντια ασύμπτωτη στο -\infty και ότι η γραφική παράσταση C_f τέμνει τη παραπάνω ασύμπτωτη σε άπειρα σημεία.
Συνέχεια ανάγνωσης ΣΗΜΕΙΑ ΤΟΜΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΚΑΙ ΟΡΙΖΟΝΤΙΑΣ ΑΣΥΜΠΤΩΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ

ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ

Έστω ένα όριο της μορφής:

    \[\lim_{x\to x_{o}}(f(x)\cdot g(x))\]

όπου f,g συναρτήσεις για τις οποίες ισχύει:

  • \displaystyle\lim_{x\to x_{o}}f(x)=0, δηλαδή η f είναι “μηδενική” συνάρτηση.
  • |g(x)|\leq M, όπου M>0, δηλαδή η g είναι μια φραγμένη συνάρτηση.

Συνέχεια ανάγνωσης ΜΗΔΕΝΙΚΗ ΕΠΙ ΦΡΑΓΜΕΝΗ