Αρχείο ετικέτας ΜΕΤΡΟ ΔΙΑΝΥΣΜΑΤΟΣ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΜΕΤΡΟ ΔΙΑΝΥΣΜΑΤΩΝ ΠΟΥ ΔΕΝ ΙΣΧΥΟΥΝ ΠΑΝΤΑ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΑ ΜΕ ΙΣΑ ΜΕΤΡΑ

Ισότητα μέτρων

Όταν έχουμε ώς δεδομένο οτι δυο διανύσματα έχουν το ίδιο μέτρο τότε υψώνουμε στο τετράγωνο και κάνουμε χρήση της ιδιότητας:

    \[\lvert \vec{\nu} \rvert^{2} = \vec{\nu}^{2}.\]

Συνέχεια ανάγνωσης ΔΙΑΝΥΣΜΑΤΑ ΜΕ ΙΣΑ ΜΕΤΡΑ

ΜΕΤΡΟ ΓΡΑΜΜΙΚΟΥ ΣΥΝΔΥΑΣΜΟΥ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ

Υπολογισμός μέτρου της μορφής \vert \boldsymbol{\kappa \vec{α} + \lambda \vec{\beta}} \rvert

Αν για τα διανύσματα \vec{α}, \vec{\beta} γνωρίζουμε το μέτρο τους |\vec{α}|, |\vec{\beta}| και την γωνία τους (\widehat{\vec{α}, \vec{\beta}}), τότε μπορούμε να βρούμε ένα μέτρο της μορφής \lvert \kappa \vec{α} + \lambda \vec{\beta} \rvert
υψώνοντας το στο τετράγωνο και χρησιμοποιόντας την ιδιότητα \vec{α}^{2} = |\vec{α}|^{2}.

Συνέχεια ανάγνωσης ΜΕΤΡΟ ΓΡΑΜΜΙΚΟΥ ΣΥΝΔΥΑΣΜΟΥ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ

ΟΜΟΡΡΟΠΑ ΑΝΤΙΡΡΟΠΑ ΔΙΑΝΥΣΜΑΤΑ ΚΡΙΤΗΡΙΟ

Κριτήριο για ομόρροπα ή αντίρροπα διανύσματα

Ισχύουν οι εξής ισοδυναμίες:

  • \vec{α} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{α} \cdot \vec{\beta} = \lvert \vec{α} \rvert \lvert \vec{\beta} \rvert
  • \vec{α} \uparrow \downarrow \vec{\beta} \Leftrightarrow \vec{α} \cdot \vec{\beta} = -\lvert \vec{α} \rvert \lvert \vec{\beta} \rvert

  • Συνέχεια ανάγνωσης ΟΜΟΡΡΟΠΑ ΑΝΤΙΡΡΟΠΑ ΔΙΑΝΥΣΜΑΤΑ ΚΡΙΤΗΡΙΟ

    ΜΕΤΡΟ ΔΙΑΝΥΣΜΑΤΟΣ

    ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

    ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ
    Η απόσταση των σημείων A(\mathrm{x}_1,\mathrm{y}_1) και B(\mathrm{x}_2,\mathrm{y}_2) του Καρτεσιανού επιπέδου είναι ίση με:

        \[AB=\sqrt{{(\mathrm{x}_2-\mathrm{x}_1)}^2+{(\mathrm{y}_2-\mathrm{y}_1)}^2}\]

    Απόδειξη

    Η απόσταση δύο σημείων AB είνα ίση με το μέτρο του διανύσματος που ορίζουν.

    Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ