Αρχείο ετικέτας ΚΡΙΤΗΡΙΟ ΠΛΕΥΡΙΚΩΝ ΟΡΙΩΝ

ΜΟΝΟΤΟΝΙΑ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΠΟΥ Η ΠΑΡΑΓΩΓΟΣ ΔΙΑΤΗΡΕΙ ΣΤΑΘΕΡΟ ΠΡΟΣΗΜΟ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

Αν για μια συνάρτηση f ορίζεται στο σύνολο A=\Delta_1\cup\Delta_2, όπου \Delta_1 και \Delta_2 διαστήματα και η παράγωγος f' διατηρει το ίδιο πρόσημο για κάθε εσωτερικό σημείο x των \Delta_1 και \Delta_2, τότε η f είναι γνησίως μονότονη σε καθένα από τα διαστήματα \Delta_1 και \Delta_2.
Δεν μπορούμε να βγάλουμε το συμπέρασμα ότι η f είναι γνησίως μονότονη σε όλο το σύνολο A=\Delta_1\cup\Delta_2.
Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΠΟΥ Η ΠΑΡΑΓΩΓΟΣ ΔΙΑΤΗΡΕΙ ΣΤΑΘΕΡΟ ΠΡΟΣΗΜΟ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΝΙΣΟΤΗΤΑΣ

Παράδειγμα.1.
Αν για την συνεχή συνάρτηση f: \rr \to \rr, ισχύει ότι:

    \[x\cdot f(x) \leq x^{2}+4x+\hm x, \quad x \in \rr,\]

να βρεθεί η τιμή του f(0).

Συνέχεια ανάγνωσης ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΝΙΣΟΤΗΤΑΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

Παράδειγμα.1.
Να βρεθεί η τιμή της παραμέτρου \alpha \in \rr, ώστε να είναι συνεχής η συνάρτηση

    \[ f(x)=\left\{ 		\begin{tabular}{ll} 			$\dfrac{5x -10}{x+1-\sqrt{x+7}},$ & $x>2$ \\\\                         $ \alpha x^{2}-5x +4\alpha, $ &   $ x\leq 2$  		\end{tabular} 	\right. \]

Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ ΣΕ ΣΥΝΕΧΗ ΣΥΝΑΡΤΗΣΗ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ

* Μια συνάρτση f την λέμε συνεχή στο x_{0} του πεδίου ορισμού της, όταν

    \[\lim_{x \to x_{0}}f(x) = f(x_{0}.)\]

*Μια συνάρτηση f λέγεται συνεχής συνάρτηση, όταν είναι συνεχής σε όλα τα σημεία του πεδίου ορισμού της.
Συνέχεια ανάγνωσης ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ

ΟΡΙΟ ΚΛΑΣΜΑΤΟΣ ΜΕ ΟΡΙΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΗΔΕΝ ΚΑΙ ΟΡΙΟ ΑΡΙΘΜΗΤΗ ΔΙΑΦΟΡΟ ΤΟΥ ΜΗΔΕΝΟΣ

Για να υπολογίσουμε ενα όριο της μορφής \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)} με \displaystyle\lim_{x\to x_{0}}f(x)=l \neq 0 και\displaystyle\lim_{x\to x_{0}}g(x)=0
Tότε βρίσκουμε το πρόσημο της g(x) κοντά στο x_{0}
και το ζητούμενο όριο θα μας κανει +\infty ή -\infty.
Δηλαδή

  •   \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)}=+\infty στην περίπτωση που l ομόσημο με το πρόσημο της g(x) κοντά στο x_{0}
  • \displaystyle\lim_{x\to x_{0}}\dfrac{f(x)}{g(x)}=-\infty στην περίπτωση που l ετερόσημο με το πρόσημο της g(x) κοντά στο x_{0}

Συνέχεια ανάγνωσης ΟΡΙΟ ΚΛΑΣΜΑΤΟΣ ΜΕ ΟΡΙΟ ΠΑΡΟΝΟΜΑΣΤΗ ΜΗΔΕΝ ΚΑΙ ΟΡΙΟ ΑΡΙΘΜΗΤΗ ΔΙΑΦΟΡΟ ΤΟΥ ΜΗΔΕΝΟΣ

ΟΡΙΟ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΚΛΑΔΟΥΣ

Έστω ότι θέλουμε να υπολογίσουμε το όριο στο x_o μιας συνάρτησης με κλάδους.

  • Αν το x_o, είναι σημείο στο οποίο αλλάζει ο τύπος της συνάρτησης, τότε παίρνουμε πλευρικά όρια και εφαρμόζουμε το παρακάτω κριτήριο:
  • Συνέχεια ανάγνωσης ΟΡΙΟ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΚΛΑΔΟΥΣ