Αρχείο ετικέτας ΕΦΑΠΤΟΜΕΝΗ ΣΥΝΑΡΤΗΣΗΣ

ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΟΠΟΥ ΟΙ ΓΡΑΦΙΚΕΣ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΧΟΥΝ ΚΟΙΝΗ ΕΦΑΠΤΟΜΕΝΗ ΣΕ ΚΟΙΝΟ ΣΗΜΕΙΟ

Παράδειγμα.

Δίνονται οι συναρτήσεις f(x) = \alpha\cdot \ln x+\beta x^{2} και g(x)=x^{2}+2\beta x +\alpha με \alpha , \beta \in \rr. Να βρείτε τις τιμές των \alpha , \beta ώστε οι γραφικές παραστάσεις των f και g να έχουν κοινή εφαπτομένη στο κοινό τους σημείο με τετμημένη x_{0}=1. Στη συνέχεια να βρεθεί η εξίσωση της κοινής εφαπτομένης.

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΟΠΟΥ ΟΙ ΓΡΑΦΙΚΕΣ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΧΟΥΝ ΚΟΙΝΗ ΕΦΑΠΤΟΜΕΝΗ ΣΕ ΚΟΙΝΟ ΣΗΜΕΙΟ

ΕΥΘΕΙΑ Η ΟΠΟΙΑ ΕΦΑΠΤΕΤΑΙ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ


Έστω f:A\to\rr μια συνάρτηση παραγωγίσιμη στο x_{0}\in A_{f}. Θα λέμε ότι

  • Η ευθεία (\epsilon):y =\lambda x +\beta, εφάπτεται στην γραφικη παράσταση της συνάρτησης, C_{f}, στο σημείο M\big(x_{0},f(x_{0})\big) αν και μόνο αν το σημειο Μ ανηκει στην C_{f} και στην ευθεία (\epsilon) και ο συντελεστης διέυθυνσης \lambda_{\epsilon}, της ευθείας (\epsilon) είναι ίσος με την παράγωγο της f στο x_{0} δηλαδή:

        \[\begin{cases}    M\big(x_{0},f(x_{0})\big)\in (\epsilon):y =\lambda x+\beta\Leftrightarrow f(x_{0})=\lambda x_{0}+\beta\\\\ \quad \text{και} \\\\    f'(x_{0})=\lambda   \end{cases}\]

  • Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΕΥΘΕΙΑ Η ΟΠΟΙΑ ΕΦΑΠΤΕΤΑΙ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

    ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

  • Αν η συνάρτηση f είναι κυρτή σε ένα διάστημα \Delta και (\epsilon): \quad y=\alpha x+\beta είναι η εφαπτομένη της C_f σε ένα σημείο της M(x_0,f(x_0), με x_0\in\Delta, τότε η C_f βρίσκεται πάνω από την (\epsilon), με εξαίρεση το σημείο επαφής. Δηλαδή για κάθε x\in\Delta ισχύει ότι

        \[f(x)\geq \alpha x+\beta.\]

  • Αν η συνάρτηση f είναι κοίλη σε ένα διάστημα \Delta και (\epsilon): \quad y=\alpha x+\beta είναι η εφαπτομένη της C_f σε ένα σημείο της M(x_0,f(x_0), με x_0\in\Delta, τότε η C_f βρίσκεται κάτω από την (\epsilon), με εξαίρεση το σημείο επαφής. Δηλαδή για κάθε x\in\Delta ισχύει ότι

        \[f(x)\leq \alpha x+\beta.\]

  • Συνέχεια ανάγνωσης ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

    ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

    Σημεία γραφικών παραστάσεων συναρτήσεων

  • Σημείο ανήκει σε C_{f}
  • Ένα σημείο M(x_{0}, y_{0}) ανήκει στη γραφική παράσταση μιας συνάρτησης f αν και μόνο αν ισχύει: f(x_{0})=y_{0}

    Σημείο τομής της γραφικης παράστασης της συνάρτησης f με τους άξονες ή με άλλες συναρτήσεις.

    Για να βρούμε:

  • Το σημείο τομής με τον άξονα x'x.
  • Θέτουμε y=0 και λύνουμε την εξίσωση f(x)=0. Οι λύσεις της εξίσωσης αυτής θα μας δώσει τα σημεία τομής.

  • Το σημείο τομής με τον άξονα y'y.
  • Θέτουμε x=0 και λύνουμε την εξίσωση y=f(0). Το σημείο τομής με τον άξονα y'y είναι η λύση της εξίσωσης και είναι το A(0,f(0)). Εφόσον υπάρχει τέτοιο σημείο αυτό είναι και μοναδικό.

  • Τα σημεία τομής δύο συναρτήσεων f(x) και g(x).
  • Συνέχεια ανάγνωσης ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

    ΕΦΑΠΤΟΜΕΝΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΤΕΛΕΣΤΗ ΔΙΕΥΘΥΝΣΗΣ

    Δίνεται η συνάρτηση f(x)=x^2-5x+4 Να βρείτε την εξίσωση της εφαπτομένης της C_f, η οποία:
    i) Έχει συντελεστή διεύθυνσης 3.
    ii) Είναι παράλληλη στην ευθεία (\zeta): y=5x-7.
    iii) Είναι κάθετη στην ευθεία (\eta):y=\frac{1}{7}x+\frac{13}{7}
    iv) Να είναι παράλληλη στο άξονα x'x.
    v) Να σχηματίζει γωνία 45^{\circ} με τον άξονα x'x.
    Συνέχεια ανάγνωσης ΕΦΑΠΤΟΜΕΝΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΤΕΛΕΣΤΗ ΔΙΕΥΘΥΝΣΗΣ

    ΕΦΑΠΤΟΜΕΝΗ ΣΕ ΕΝΑ ΣΗΜΕΙΟ

    Παράδειγμα.1
    Δίνεται η συνάρτηση f(x)=x^2-5x+9 Να βρείτε την εξίσωση της εφαπτομένης της C_f στο σημείο της A(2,f(2)).
    Συνέχεια ανάγνωσης ΕΦΑΠΤΟΜΕΝΗ ΣΕ ΕΝΑ ΣΗΜΕΙΟ