Αρχείο ετικέτας ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ

ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΟΠΟΥ ΟΙ ΓΡΑΦΙΚΕΣ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΧΟΥΝ ΚΟΙΝΗ ΕΦΑΠΤΟΜΕΝΗ ΣΕ ΚΟΙΝΟ ΣΗΜΕΙΟ

Παράδειγμα.

Δίνονται οι συναρτήσεις f(x) = \alpha\cdot \ln x+\beta x^{2} και g(x)=x^{2}+2\beta x +\alpha με \alpha , \beta \in \rr. Να βρείτε τις τιμές των \alpha , \beta ώστε οι γραφικές παραστάσεις των f και g να έχουν κοινή εφαπτομένη στο κοινό τους σημείο με τετμημένη x_{0}=1. Στη συνέχεια να βρεθεί η εξίσωση της κοινής εφαπτομένης.

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΟΠΟΥ ΟΙ ΓΡΑΦΙΚΕΣ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΧΟΥΝ ΚΟΙΝΗ ΕΦΑΠΤΟΜΕΝΗ ΣΕ ΚΟΙΝΟ ΣΗΜΕΙΟ

ΕΥΘΕΙΑ Η ΟΠΟΙΑ ΕΦΑΠΤΕΤΑΙ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ


Έστω f:A\to\rr μια συνάρτηση παραγωγίσιμη στο x_{0}\in A_{f}. Θα λέμε ότι

  • Η ευθεία (\epsilon):y =\lambda x +\beta, εφάπτεται στην γραφικη παράσταση της συνάρτησης, C_{f}, στο σημείο M\big(x_{0},f(x_{0})\big) αν και μόνο αν το σημειο Μ ανηκει στην C_{f} και στην ευθεία (\epsilon) και ο συντελεστης διέυθυνσης \lambda_{\epsilon}, της ευθείας (\epsilon) είναι ίσος με την παράγωγο της f στο x_{0} δηλαδή:

        \[\begin{cases}    M\big(x_{0},f(x_{0})\big)\in (\epsilon):y =\lambda x+\beta\Leftrightarrow f(x_{0})=\lambda x_{0}+\beta\\\\ \quad \text{και} \\\\    f'(x_{0})=\lambda   \end{cases}\]

  • Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΕΥΘΕΙΑ Η ΟΠΟΙΑ ΕΦΑΠΤΕΤΑΙ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ