Αρχείο ετικέτας ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

  • Αν μια συνάρτηση f είναι γνησίως μονότονη τότε η συνάρτηση f είναι και 1-1. Το αντίστροφο δεν ισχύει.
  • Αν για μία συνάρτηση f διαπιστώσουμε ότι είναι άρτια ή περιοδική ή ότι για δύο διαφορετικές τιμές του x π.χ x_{1},x_{2} είναι f(x_{1})=f(x_{2}) τότε η συνάρτηση δεν είναι 1-1 αφου θα έχουμε x_{1}\neq x_{2} \Rightarrow f(x_{1})=f(x_{2}).
  • Συνέχεια ανάγνωσης ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

    ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται άρτια όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας άρτιας συνάρτησης είναι συμμετρική ως προς τον άξονα y'y.

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται περιττή όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=-f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας περιττής συνάρτησης είναι συμμετρική ως προς την αρχή των αξόνων.
    Συνέχεια ανάγνωσης ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ