Αρχείο ετικέτας ΑΝΙΣΟΤΗΤΕΣ

ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

  • Αν η συνάρτηση f είναι κυρτή σε ένα διάστημα \Delta και (\epsilon): \quad y=\alpha x+\beta είναι η εφαπτομένη της C_f σε ένα σημείο της M(x_0,f(x_0), με x_0\in\Delta, τότε η C_f βρίσκεται πάνω από την (\epsilon), με εξαίρεση το σημείο επαφής. Δηλαδή για κάθε x\in\Delta ισχύει ότι

        \[f(x)\geq \alpha x+\beta.\]

  • Αν η συνάρτηση f είναι κοίλη σε ένα διάστημα \Delta και (\epsilon): \quad y=\alpha x+\beta είναι η εφαπτομένη της C_f σε ένα σημείο της M(x_0,f(x_0), με x_0\in\Delta, τότε η C_f βρίσκεται κάτω από την (\epsilon), με εξαίρεση το σημείο επαφής. Δηλαδή για κάθε x\in\Delta ισχύει ότι

        \[f(x)\leq \alpha x+\beta.\]

  • Συνέχεια ανάγνωσης ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

    ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

    Αν έχουμε ως δεδομένο μια ανισότητα της μορφής

        \[f(x)\leq g(x) \quad \text{ή} \quad f(x)\geq g(x)\]

    για κάθε x\in\Delta και το ζητούμενο είναι να αποδείξουμε μια ισότητα τότε εργαζόμαστε ως εξής:
    Συνέχεια ανάγνωσης ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

    ΔΙΑΤΑΞΗ ΟΛΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΙΑ ΤΗΝ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    Θεωρούμε δύο συναρτήσεις f,g:A\rightarrow\rr.
    Αν η f έχει ολικό ελάχιστο το \mu
    και η g έχει ολικό μέγιστο το M
    και ισχύει \mu\geq M,
    τότε ισχύει ότι f(x)\geq g(x) για κάθε x\in A.
    Συνέχεια ανάγνωσης ΔΙΑΤΑΞΗ ΟΛΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΙΑ ΤΗΝ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό ελάχιστο \mu>0 τότε ισχύει ότι f(x)>0 για κάθε x\in A.
  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό μέγιστο M<0 τότε ισχύει ότι f(x)<0 για κάθε x\in A.
  • Συνέχεια ανάγνωσης ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

    ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΟΤΗΤΕΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    Για να αποδείξουμε μια ανισότητα της μορφής f(x)\geq g(x) με f, g παραγωγίσιμες συναρτησεις για καθε x\in\Delta εργαζόμαστε ως εξής:

    • Μεταφέρουμε όλους τους όρους στο ένα μέλος και η ανίσωση γίνεται f(x)-g(x)\geq0

    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΟΤΗΤΕΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΕΥΡΕΥΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ ΣΤΗΝ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    Μπορούμε να αποδείξουμε μια διπλή ανισότητα δύο μεταβλητών \alpha,\beta με τη βοήθεια του Θ.Μ.Τ ως εξής:

  • Βρίσκουμε μια συνάρτηση f, ώστε η ανισότητα να παίρνει τη μορφή:

        \[\kappa< \frac{f(\beta)-f(\alpha)}{\beta-\alpha}<\lambda\]

  • Εφαρμόζουμε το Θ.Μ.Τ για την f στο [\alpha,\beta]. Υπάρχει \xi\in(\alpha,\beta) ώστε:

        \[f'(\xi)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}\]

  • Ξεκινάμε από την ανισότητα \alpha< \xi<\beta και καταλήγουμε στην ανισότητα:

        \[\kappa<f'(\xi)<\lambda\]

  • Συνέχεια ανάγνωσης ΕΥΡΕΥΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ ΣΤΗΝ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    Αν έχουμε δεδομένο μια ανισοτική σχέση για την f' και το ζητούμενο είναι μια ανισοτική σχέση για την f, τότε ενδεχομένως η απόδειξη μπορεί να γίνει με τη βοήθεια του Θεωρήματος Μέσης Τιμής.
    Συνέχεια ανάγνωσης ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    Για την απόδειξη ανισοτητων με τη μέθοδο της μονοτονίας ακολουθούμε τα παρακάτω βήματα:

  • Διαχωρίζουμε τους όρους στα δύο μέλη έτσι ώστε σε κάθε μέλος να υπάρχει η ίδια παράμετρος.
  • Παρατηρούμε αν ορίζεται η ίδια συνάρτηση και στα δύο μέλη και η μόνη διαφορά τους είναι η διαφορετική παράμετρος.
  • Θεωρουμε την παραπάνω συνάρτηση ως προς f(x) και την μελετάμε ως προς τη μονοτονία.
  • Εφαρμόζουμε τον ορισμο της μονοτονίας για τις περιπτώσεις της γνησίως αύξουσας και γνησίως φθίνουσας συνάρτησης, αντίστοιχα.
  • Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ