Αρχείο ετικέτας ΑΛΓΕΒΡΙΚΟΣ ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΣΧΕΣΗ ΠΟΥ ΠΕΡΙΕΧΕΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ


Ξέρουμε ότι: το ορισμένο ολοκλήρωμα \dint_{\alpha}^{\beta} f(x) dx είναι σταθερός αριθμός.
Δηλαδή \dint_{\alpha}^{\beta} f(x) dx =c, \quad c\in \rr, οπότε θα ισχύει: \bigg(\dint_{\alpha}^{\beta} f(x) dx\bigg)'=0.
Συνεπώς στην περίπτωση που έχουμε μια ισότητα I η οποία περιέχει τις f(x), f(x) και το \dint_{\alpha}^{\beta} f(x) dx και θέλουμε να βρούμε την f τότε:

  • Θέτουμε c=\dint_{\alpha}^{\beta} f(x) dx \quad (1.)
  • Αντικαθιστούμε στη σχέση I το \dint_{\alpha}^{\beta} f(x) dx με το c
  • Βρίσκουμε την συνάρτηση f συναρτήσει του c και
  • Την αντικαθιστούμε στη σχέση (1).

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΣΧΕΣΗ ΠΟΥ ΠΕΡΙΕΧΕΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

Παράδειγμα.
Να εκφράσετε τη συνάρτηση f, ώς σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν ισχύει:
i.) \quad f(x) = e^{-x} \quad ii.) \quad f(x) = \syn^{3}(2x)+1
iii.) f(x) = e^{g(x)}-g^{3}(x)-\hm g(x) όπου g:\rr \to\rr.
Συνέχεια ανάγνωσης ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

Αν για δύο συναρτήσεις f και g ισχύει ότι:

    \[f'(x)=g'(x)\]

για κάθε x\in\Delta_1\cup\Delta_2\cup... όπου \Delta_1, \Delta_2,... διαστήματα, τότε είναι:

    \[f(x)= \left\{ \begin{tabular}{ll} $g(x)+c_1, \quad \text{αν} \quad x\in\Delta_1$ \\ $g(x)+c_2, \quad \text{αν} \quad x\in\Delta_2$ \\ $\vdots$ \end{tabular} \right.  \]

Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΤΟ ΙΔΙΟ ΔΙΑΣΤΗΜΑ

Έστω δύο συναρτήσεις f,g ορισμένες σε ένα διάστημα \Delta. Αν:

  • Οι f,g είναι συνεχείς στο \Delta και
  • f'(x)=g'(x) για κάθε εσωτερικό σημείο x του \Delta
  • Τότε υπάρχει σταθερά c τέτοιο ώστε για κάθε x\in\Delta να ισχύει:

        \[f(x)=g(x)+c\]

    Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΤΟ ΙΔΙΟ ΔΙΑΣΤΗΜΑ

    ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

    Αν για μια συνάρτηση f ισχύει ότι: f'(x)=0 για κάθε x\in\Delta_1\cup\Delta_2\cup... όπου \Delta_1,\Delta_2,... διαστήματα, τότε είναι:

        \[f(x)= \left\{ \begin{tabular}{ll} $c_1, \quad \text{αν} \quad x\in\Delta_1$ \\ $c_2, \quad \text{αν} \quad x\in\Delta_2$ \\ $\vdots$ \end{tabular} \right. \]

    Συνέχεια ανάγνωσης ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

    ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ

    Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα \Delta. Αν:

    • Η f είναι συνεχής στο \Delta και
    • f'(x) = 0 για κάθε εσωτερικό σημείο x του \Delta

    τότε η f είναι σταθερή σε όλο το διάστημα \Delta.

    Για τις ασκήσεις, για να αποδείξουμε ότι μια συνάρτηση f είναι σταθερή σε ένα διάστημα \Delta, εργαζόμαστε ως εξής:

    • Αποδεικνύουμε ότι η f είναι συνεχής στο \Delta
    • Αποδεικνύουμε ότι

          \[f'(x)=0\]

      για κάθε εσωτερικό σημείο x \in \Delta.

    Συνέχεια ανάγνωσης ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ

    ΕΥΡΕΣΗ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ

    Έστω f: A \rightarrow \mathbb{R} μια συνάρτηση, για να βρούμε την αντίστροφη της f εργαζόμαστε ως εξής:

  • Αποδεικνύουμε ότι η f είναι 1-1.
  • Θέτουμε f(x)=y οπότε είναι x=f^{^{-1}}(y).
  • Λύνουμε την εξίσωση f(x)=y ως προς x, βάζοντας κατάλληλους περιορισμούς για το y.
  • Η συναλήθευση των περιορισμών για το y μας δίνουν το σύνολο τιμών της f, το οποίο είναι το πεδίο ορισμού της f^{-1}.
  • Αν η λύση της εξίσωσης y=f(x) ως προς x ειναι η x=g(y), τότε έχουμε f^{-1}(y)=g(y). Θέτουμε όπου y το x και έχουμε έτσι τον τύπο της f^{-1}.
  • Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

    Για συναρτησεις δύο μεταβλητων της μορφής,

        \[f(x+y),\]

    τις αντιμετωπίζουμε με μία απο τις παρακάτω αντικαταστάσεις:

  • όπου x και y το 0.
  • όπου y το -x.
  • όπου x το y και αντιστρόφως.
  • όπου y το μηδέν οπότε έχουμε ισότητα μόνο ως προς x.
  • Για συναρτησεις δύο μεταβλητων της μορφής,

        \[f(x\cdot y),\]

    Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

    ΑΠΟΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ. ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

    Όταν γνωρίζουμε τις συναρτήσεις (f \circ g)(x) και g(x), τότε για να βρούμε τη συνάρτηση f(x) εργαζόμαστε ως εξής:

  • Θέτουμε όπου g(x)=u.
  • Λύνουμε την παραπάνω σχέση ως προς x.
  • Αντικαθιστούμε το x που βρήκαμε στον τύπο f(g(x).)
  • Συνέχεια ανάγνωσης ΑΠΟΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ. ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

    ΙΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

    Για να αποδείξουμε ότι δύο συναρτήσεις f,g είναι ίσες αρκεί να δείξουμε ότι:

  • έχουν το ίδιο πεδίο ορισμού Α και,
  • για κάθε x στο πεδίο ορισμού τους έχουν τον ίδιο τύπο, δηλαδή f(x)=g(x) \quad \forall x \in A
  • Συνέχεια ανάγνωσης ΙΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ