Αρχείο ετικέτας ΑΚΡΟΤΑΤΑ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ ΣΕ ΣΗΜΕΙΟ ΑΣΥΝΕΧΕΙΑΣ

Στη περίπτωση που η συνάρτηση f, είναι ασυνεχής σε ένα σημείο x_{0} του πεδίου ορισμού της τότε διακρίνουμε τις παρακάτω περιπτώσεις:

  • Αν \displaystyle\lim_{x\to x_{0}^{-}}f(x)\leq f(x_{0}) και \displaystyle\lim_{x\to x_{0}^{+}}f(x)\leq f(x_{0}) και η f αυξάνεται αριστερά του x_{0} και φθίνει δεξιά του x_{0}, τότε στο x_{0} η συνάρτηση f παρουσιάζει τοπικό μέγιστο.
  • Αν \displaystyle\lim_{x\to x_{0}^{-}}f(x)\geq f(x_{0}) και \displaystyle\lim_{x\to x_{0}^{+}}f(x)\geq f(x_{0}) και η f φθίνει αριστερά του x_{0} και αυξάνεται δεξιά του x_{0}, τότε στο x_{0} η συνάρτηση f παρουσιάζει τοπικό ελάχιστο.

Σε κάθε περίπτωση η σχεδίαση μιας πρόχειρης γραφικής παράστασης της συνάρτησης f κοντά στη περιοχή του x_{0} μας βοηθά στην απάντηση μας.

Συνέχεια ανάγνωσης ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ ΣΕ ΣΗΜΕΙΟ ΑΣΥΝΕΧΕΙΑΣ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

Να βρείτε τα ακρότατα της συνάρτησης

    \[f(x)= \left\{ \begin{tabular}{ll} $x^2+2x-6,$ &$x\leq2$ \\\\ $x^2-8x+14,$ & $ x>2$  \end{tabular} \right. \]

Συνέχεια ανάγνωσης ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Θεώρημα Fermat
Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα \Delta.
Αν ισχύουν τα παρακάτω

  • η f παρουσιάζει τοπικό ή ολικό ακρότατο στο x_0,
  • το x_0 είναι εσωτερικό σημείο του \Delta,
  • η f είναι παραγωγίσιμη στο x_0,

τότε f'(x_0)=0.
Συνέχεια ανάγνωσης ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΟΛΙΚΑ ΑΚΡΟΤΑΤΑ ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

  • Αν f(x) \leq f(x_{0}) για κάθε x \in A_{f} θα λέμε ότι η f παρουσιάζει στο x_{0}\in A_{f}, ολικό μέγιστο, το f(x_{0}).
    δηλαδή

        \[max f = f(x_{0})\]

  • Αν f(x) \geq f(x_{0}) για κάθε x \in A_{f} θα λέμε ότι η f παρουσιάζει στο x_{0}\in A_{f}, ολικό ελάχιστο, το f(x_{0}).
    δηλαδή

        \[min f = f(x_{0})\]

  • Συνέχεια ανάγνωσης ΟΛΙΚΑ ΑΚΡΟΤΑΤΑ ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ