ΜΑΘΗΜΑΤΙΚΑ Β. ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ. ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟΜΟΣ Β.

ΜΑΘΗΜΑΤΙΚΑ Γ. ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟΜΟΣ Α.

ΑΣΥΜΠΤΩΤΗ ΚΑΙ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

Παράδειγμα.
Δίνεται συνάρτηση f:\rr\rightarrow\rr της οποίας η γραφική παράσταση έχει ασύμπτωτη στο +\infty την ευθεία y=2x-1. Να υπολογίσετε το όριο

    \[\lim_{x \to +\infty}\frac{f(x)\ln(1+e^x)}{x^2f(x)-2x^3}\]

Συνέχεια ανάγνωσης ΑΣΥΜΠΤΩΤΗ ΚΑΙ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΑΝΟΝΑ DE L HOSPITAL

ΚΑΝΟΝΕΣ DE L HOSPITAL ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

Παράδειγμα.
Να βρείτε τους πραγματικούς αριθμούς \alpha,\beta και \gamma ώστε να ισχύει

    \[\lim_{x \to 1}\frac{\alpha e^{2x}+\beta x+\gamma}{(x-1)^2}=2\]

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΕΥΡΕΣΗ ΤΙΜΗΣ ΠΑΡΑΜΕΤΡΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΜΕΙΟΝ ΑΠΕΙΡΟ

Αν ισχύουν

    \[\lim_{x \to x_0}f(x)=\lim_{x \to x_0}g(x)=\pm\infty\]

όπου x_0\in\rr\cup\{-\infty,+\infty\}, τότε το όριο:

    \[\lim_{x \to x_0}\Big[f(x)-g(x)\Big]\]

έχει την απροσδιόριστη μορφή (+\infty)-(+\infty) ή (-\infty)-(-\infty). Για να υπολογίσουμε όρια αυτής της μορφής συνήθως βγάζουμε κοινό παράγοντα την f(x) ή τη g(x).

    \[\lim_{x \to x_0}\Big[f(x)-g(x)\Big]=\lim_{x \to x_0}\bigg{[}f(x)\Big(1-\frac{g(x)}{f(x)}\Big)\bigg{]}\]

‘Οπου το όριο

    \[\lim_{x \to x_0}\frac{g(x)}{f(x)}\]

είναι της μορφής \frac{\infty}{\infty} και αν πληρούνται οι προυποθέσεις εφαρμόζουμε το κανόνα De L’Hospital.
Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΜΕΙΟΝ ΑΠΕΙΡΟ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΕΙΣ ΤΗ ΜΗΔΕΝΙΚΗ

Αν ένα όριο

    \[\lim_{x \to x_0}[f(x)]^{g(x)}\]

έχει την απροσδιόριστη άπειρο εις τη μηδενικη (\pm \infty)^{0}, τότε για να άρουμε την απροσδιοριστια του ορίου και να υπολογίσουμε την τιμή του ορίου εργαζόμαστε ως εξής:

    \begin{align*} &\lim_{x \to x_0}[f(x)]^{g(x)}=\\\\ &\lim_{x \to x_0}e^{\ln [f(x)]^{g(x)}}=\\\\ &\lim_{x \to x_0}e^{g(x)\ln f(x)}. \end{align*}

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΑΠΕΙΡΟ ΕΙΣ ΤΗ ΜΗΔΕΝΙΚΗ

ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΗΣ

Παράδειγμα.
Έστω η συνάρτηση f: \rr \to \rr για την οποία ισχύει

    \[f(x^{2}+6)+ f(5x) = 0, \quad x\in \rr.\]

Να δείξετε ότι η γραφική παράσταση της συναρτησης f τέμνει τον άξονα x'x σε δύο τουλάχιστον σημεία.

Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΗΣ

ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΕΝΑ ΕΙΣ ΤΗΝ ΑΠΕΙΡΟ

Αν ένα όριο

    \[\lim_{x \to x_0}[f(x)]^{g(x)}\]

έχει την απροσδιόριστη μορφή ένα εις την άπειρο 1^{\pm \infty}, τότε για να άρουμε την απροσδιοριστια του ορίου και να υπολογίσουμε την τιμή του ορίου εργαζόμαστε ως εξής:

    \begin{align*} &\lim_{x \to x_0}[f(x)]^{g(x)}=\\\\ &\lim_{x \to x_0}e^{\ln [f(x)]^{g(x)}}=\\\\ &\lim_{x \to x_0}e^{g(x)\ln f(x)}. \end{align*}

Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ DE L HOSPITAL ΑΠΡΟΣΔΙΟΡΙΣΤΗ ΜΟΡΦΗ ΕΝΑ ΕΙΣ ΤΗΝ ΑΠΕΙΡΟ

ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

Παράδειγμα.
Να εκφράσετε τη συνάρτηση f, ώς σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν ισχύει:
i.) \quad f(x) = e^{-x} \quad ii.) \quad f(x) = \syn^{3}(2x)+1
iii.) f(x) = e^{g(x)}-g^{3}(x)-\hm g(x) όπου g:\rr \to\rr.
Συνέχεια ανάγνωσης ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ένας ιστότοπος για τα Μαθηματικά