Φ12/201

Φ7/200

Φ6/201

ΓΡΑΜΜΙΚΟΣ ΣΥΝΔΥΑΣΜΟΣ ΔΙΑΝΥΣΜΑΤΩΝ

Συντεταγμένες γραμμικού συνδυασμού διανυσμάτων

Αν \vec{\alpha}=(\mathrm{x}_1,\mathrm{y}_1) και \vec{\beta}=(\mathrm{x}_2,\mathrm{y}_2), τότε ισχύουν:

  • \vec{\alpha}+\vec{\beta}=(\mathrm{x}_1,\mathrm{y}_1)+(\mathrm{x}_2,\mathrm{y}_2)=(\mathrm{x}_1+\mathrm{x}_2,\mathrm{y}_1+\mathrm{y}_2)
  • \lambda \cdot \vec{\alpha}=\lambda \cdot (\mathrm{x}_1,\mathrm{y}_1)=(\lambda \cdot \mathrm{x}_1, \lambda \cdot \mathrm{y_1}),\lambda \in \mathbb{R}
  • \lambda \cdot \vec{\alpha}+\mu \cdot \vec{\beta}=(\lambda \cdot \mathrm{x}_1 + \mu \cdot \mathrm{x}_2, \lambda \cdot \mathrm{y_1}+\mu \cdot \mathrm{y_2}), \lambda, \mu \in \mathbb{R}

Απόδειξη
Για τις συντεταγμένες του τυχαίου διανύσματος \vec{\alpha} ισχύουν:

Συνέχεια ανάγνωσης ΓΡΑΜΜΙΚΟΣ ΣΥΝΔΥΑΣΜΟΣ ΔΙΑΝΥΣΜΑΤΩΝ

ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΓΙΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΓΙΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΓΙΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ένας ιστότοπος για τα Μαθηματικά