Αρχείο κατηγορίας ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΕΥΡΕΥΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ ΣΤΗΝ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

Μπορούμε να αποδείξουμε μια διπλή ανισότητα δύο μεταβλητών \alpha,\beta με τη βοήθεια του Θ.Μ.Τ ως εξής:

  • Βρίσκουμε μια συνάρτηση f, ώστε η ανισότητα να παίρνει τη μορφή:

        \[\kappa< \frac{f(\beta)-f(\alpha)}{\beta-\alpha}<\lambda\]

  • Εφαρμόζουμε το Θ.Μ.Τ για την f στο [\alpha,\beta]. Υπάρχει \xi\in(\alpha,\beta) ώστε:

        \[f'(\xi)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}\]

  • Ξεκινάμε από την ανισότητα \alpha< \xi<\beta και καταλήγουμε στην ανισότητα:

        \[\kappa<f'(\xi)<\lambda\]

  • Συνέχεια ανάγνωσης ΕΥΡΕΥΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ ΣΤΗΝ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    Αν έχουμε δεδομένο μια ανισοτική σχέση για την f' και το ζητούμενο είναι μια ανισοτική σχέση για την f, τότε ενδεχομένως η απόδειξη μπορεί να γίνει με τη βοήθεια του Θεωρήματος Μέσης Τιμής.
    Συνέχεια ανάγνωσης ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΘΜΤ

    Για να αποδείξουμε ότι υπάρχει \xi ώστε f''(\xi)=0, πρέπει να εφαρμόσουμε το θεώρημα Rolle για την f' σε κάποιο διάστημα [x_1,x_2].

    Αυτό σημαίνει ότι πρέπει να βρούμε δύο αριθμούς x_1\neq x_2 με f'(x_1)=f'(x_2). Οι τιμές αυτές μπορούν να προκύψουν με εφαρμογή του Θ.Μ.Τ σε δύο διαστήματα ξένα μεταξύ τους.

    Συνέχεια ανάγνωσης ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΠΟΥ ΠΕΡΙΕΧΟΥΝ ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΘΜΤ

    ΣΥΝΔΙΑΣΜΟΣ ΥΠΑΡΞΙΑΚΩΝ ΘΕΩΡΗΜΑΤΩΝ ΚΑΙ Θ.Μ.Τ

    Ενας ακόμα τρόποςγια να χωρίσουμε το διάστημα [\alpha,\beta] σε δύο υποδιαστήματα, μπορούμε να εκμεταλλευτούμε την ύπαρξη κάποιου \xi\in(\alpha,\beta) που έχουμε εξασφαλίσει σε προηγούμενο ερώτημα.
    Συνέχεια ανάγνωσης ΣΥΝΔΙΑΣΜΟΣ ΥΠΑΡΞΙΑΚΩΝ ΘΕΩΡΗΜΑΤΩΝ ΚΑΙ Θ.Μ.Τ

    ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΑΝΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

    Όταν μας ζητούν να αποδείξουμε ότι υπάρχουν \xi_1, \xi_2,...,\xi_{\nu}\in(\alpha,\beta) για τα οποία ισχύει

        \[\kappa_1f'(\xi_1)+\kappa_2f'(\xi_2)+...+\kappa_{\nu}f'(\xi_{\nu})=\lambda\]

    τότε πρέπει να χωρίσουμε το διάστημα [\alpha,\beta] σε \nu υποδιαστήματα και εφαρμόζουμε το Θ.Μ.Τ σε καθένα από αυτά. Ο χωρισμός θα πρέπει να γίνει ως εξής:
    Έστω \delta=\beta-\alpha το πλάτος του διαστήματος [\alpha,\beta] και

        \[\kappa=\kappa_1+\kappa_2+...+\kappa_\nu\]

    Θεωρούμε τα υποδιαστήματα [\alpha,x_1],[x_1,x_2],...,[x_{\nu-1},\beta] με αντίστοιχα πλάτη

        \[\delta_1=\frac{\kappa_1}{\kappa}\cdot\delta, \delta_2=\frac{\kappa_2}{\kappa}\cdot\delta,...,\delta_{\nu}=\frac{\kappa_\nu}{\kappa}\cdot\delta\]

    Συνέχεια ανάγνωσης ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΑΝΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

    ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

    Περίπτωση 1
    Όταν μας ζητούν να αποδείξουμε ότι υπάρχουν \xi_1,\xi_2,\xi_3,...,\xi_{\nu}\in(\alpha,\beta) για τα οποία ισχύει
    f'(\xi_1)+f'(\xi_2)+...+f'(\xi_{\nu})=\lambda τότε πρέπει να χωρίσουμε το διάστημα [\alpha,\beta] σε \nu υποδιαστήματα και εφαρμόζουμε το Θ.Μ.Τ σε καθένα πο αυτά.

  • Αν έχουμε δεδομένα για τιμές της f στο [\alpha,\beta], τότε αυτές μας δείχνουν με ποιον τρόπο θα χωρίσουμε το [\alpha,\beta] σε υποδιαστήματα.
  • Συνέχεια ανάγνωσης ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

    ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    Αν μια συνάρτηση f είναι:

  • Συνεχής στο κλειστό διάστημα [\alpha,\beta]
  • Παραγωγίσιμη στο ανοιχτό διάστημα (\alpha,\beta)
  • Τότε υπάρχει ένα τουλάχιστον \xi\in(\alpha,\beta) τέτοιο ώστε:

        \[f'(\xi)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}\]

    Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ