Αρχείο κατηγορίας Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΑΣΚΗΣΕΙΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΟΡΙΣΜΟΥ ΤΗΣ ΠΑΡΑΓΩΓΟΥ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 2 με f'(2)=1
Να υπολογίσετε τα όρια:

i) \displaystyle\lim_{h\to 0} \dfrac{f(2+4h)-f(2)}{h}

ii)\displaystyle\lim_{h\to 0}\dfrac{f(2+4h)-f(2-h)}{h}
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΟΡΙΣΜΟΥ ΤΗΣ ΠΑΡΑΓΩΓΟΥ

ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΑΠΟ ΓΝΩΣΤΗ ΠΑΡΑΓΩΓΟ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 0 με f'(0)=2
Να υπολογίσετε τα όρια

i) \displaystyle\lim_{x \to 0}\dfrac{f(2x)-f(0)}{x}

ii)\displaystyle\lim_{x \to 0}\dfrac{f(7x)-f(3x)}{x}
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΑΠΟ ΓΝΩΣΤΗ ΠΑΡΑΓΩΓΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΜΕ ΤΟ ΤΕΧΝΑΣΜΑ ΤΗΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 2 για την οποία ισχύει:

\displaystyle\lim_{x \to 2}\frac{xf(x)-2f(2)}{x-2}=7 \quad και \,\displaystyle\lim_{x \to 2}\frac{x^2f(2)-4f(x)}{x-2}=-8

Να βρείτε τις τιμές f(2) και f'(2)
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΜΕ ΤΟ ΤΕΧΝΑΣΜΑ ΤΗΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ

ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 0 με f'(0)=2 της οποίας η γραφική παράσταση δεν διέρχεται απο την αρχή των αξόνων. Επιπλέον ισχύει

    \[f(x+y)=f(x)f(y)-\eta\mu x \eta\mu y \quad \text{για κάθε} \quad x,y\in\mathbb{R}\]

i) Να βρείτε την τιμή f(0).
ii) Να αποδείξετε ότι η f είναι παραγωγίσιμη σε κάθε x_0\in\mathbb{R} και ισχύει

    \[f'(x_{0})=2f(x_0)-\eta\mu x_0\]

Συνέχεια ανάγνωσης ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

Δίνεται συνεχής συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} για την οποία ισχύει ότι

    \[\lim_{x \to 0}\frac{xf(x)-\eta\mu^2 x}{x^2}=8\]

i) Να βρείτε την τιμή f(0).
ii) Να αποδείξετε ότι η f είναι παραγωγίσιμη στο 0 και να βρείτε την f'(0).
iii) Να υπολογίσετε το

    \[\lim_{x \to 0}\frac{f(x)\eta\mu x}{\eta\mu^23x}\]

Συνέχεια ανάγνωσης ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΜΕ ΤΟ ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} για την οποία ισχύει ότι

    \[2x-3x^2\leq f(x)\leq2x+x^2\]

για κάθε x\in\mathbb{R}.
Να αποδείξετε ότι η f είναι παραγωγίσιμη στο 0 και να βρείτε την f'(0).
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΜΕ ΤΟ ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΕ ΠΑΡΑΓΩΓΙΣΙΜΗ ΣΥΝΑΡΤΗΣΗ

Δίνεται η συνάρτηση

    \[f(x)=\left\{         	\begin{tabular}{ll} 				$x^3,  \quad x \geq2$ \\ 				$x^2+\alpha x+\beta, \quad x < 2$  			\end{tabular} 		\right.  		\]

Να βρείτε τις τιμές των \alpha,\beta\in\mathbb{R}, ώστε η συνάρτηση f να είναι παραγωγίσιμη στο 2.
Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΕ ΠΑΡΑΓΩΓΙΣΙΜΗ ΣΥΝΑΡΤΗΣΗ