Αρχείο κατηγορίας ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

Ισχύουν:

  • H σύνθεση f\circ f^{^{-1}} είναι συνάρτηση ταυτοτική στο f(A) δηλαδή:

        \[\Big( f\circ f^{^{-1}}\Big)(x)=f \Big(f^{^{-1}}(x)\Big)=x.\]

  • H σύνθεση f^{^{-1}}\circ f είναι συνάρτηση ταυτοτική στο A_{f} δηλαδή:

        \[\Big( f^{^{-1}}\circ f\Big)(x)=f ^{^{-1}}\Big(f(x)\Big)=x.\]

  • Οι συναρτήσεις f και f^{^{-1}} έχουν το ίδιο είδος μονοτονίας.
  • Rendered by QuickLaTeX.com

  • Rendered by QuickLaTeX.com

  • Συνέχεια ανάγνωσης ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    ΑΝΤΙΣΤΡΟΦΗ – ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ – ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    Επίλυση της εξίσωσης {\bf{ f^{^{-1}}(x) =f(x),}} στην περίπτωση που η f είναι γνησίως αύξουσα συνάρτηση.
    Ισχύει ότι:

  • H σύνθεση f\circ f^{^{-1}} είναι συνάρτηση ταυτοτική στο f(A) δηλαδή:
  •     \[\Big( f\circ f^{^{-1}}\Big)(x)=f \Big(f^{^{-1}}(x)\Big)=x.\]

  • H σύνθεση f^{^{-1}}\circ f είναι συνάρτηση ταυτοτική στο A_{f} δηλαδή:
  •     \[\Big( f^{^{-1}}\circ f\Big)(x)=f ^{^{-1}}\Big(f(x)\Big)=x.\]

  • Οι συναρτήσεις f και f^{^{-1}} έχουν το ίδιο είδος μονοτονίας.
  • Συνέχεια ανάγνωσης ΑΝΤΙΣΤΡΟΦΗ – ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ – ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    Έστω f:A\rightarrow\mathbb{R} μία 1-1 συνάρτηση, άρα ορίζεται η αντίστροφη f^{-1}. Επειδή οι γραφικές παραστάσεις C_{f} και C_{f^{-1}} είναι συμμετρικές ως προς την ευθεία y=x, προκύπτει ότι οι εξισώσεις f(x)=x και f^{-1}(x)=x είναι ισοδύναμες, δηλαδή:

        \[f(x)=x\Leftrightarrow f^{-1}(x)=x.\]

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    ΕΥΡΕΣΗ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ

    Έστω f: A \rightarrow \mathbb{R} μια συνάρτηση, για να βρούμε την αντίστροφη της f εργαζόμαστε ως εξής:

  • Αποδεικνύουμε ότι η f είναι 1-1.
  • Θέτουμε f(x)=y οπότε είναι x=f^{^{-1}}(y).
  • Λύνουμε την εξίσωση f(x)=y ως προς x, βάζοντας κατάλληλους περιορισμούς για το y.
  • Η συναλήθευση των περιορισμών για το y μας δίνουν το σύνολο τιμών της f, το οποίο είναι το πεδίο ορισμού της f^{-1}.
  • Αν η λύση της εξίσωσης y=f(x) ως προς x ειναι η x=g(y), τότε έχουμε f^{-1}(y)=g(y). Θέτουμε όπου y το x και έχουμε έτσι τον τύπο της f^{-1}.
  • Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ