Αρχείο κατηγορίας Β Λυκείου

ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΜΕΣΟΥ

Οι περισσότερες ασκήσεις με διανυσματικές σχέσεις μπορούν να λυθούν με τη μέθοδο των διανυσματικών ακτίνων.

  • Όταν θέλω πρόσθεση έχω το ίδιο μεσαίο σημείο

        \[\overrightarrow{AB} = \overrightarrow{AO} +\overrightarrow{OB}\]

  • Όταν θέλω αφαίρεση έχω το ίδιο αρχικό σημείο

        \[\overrightarrow{AB} = \overrightarrow{OA} -\overrightarrow{OB}\]

    Δηλαδή όταν ένα διάνυσμα πρέπει να αναλυθεί:

    Συνέχεια ανάγνωσης ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΚΑΙ ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΚΤΙΝΑ ΜΕΣΟΥ

  • ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται άρτια όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας άρτιας συνάρτησης είναι συμμετρική ως προς τον άξονα y'y.

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται περιττή όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=-f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας περιττής συνάρτησης είναι συμμετρική ως προς την αρχή των αξόνων.
    Συνέχεια ανάγνωσης ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

    ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

    Ερώτηση
    Τι ονομάζουμε αριθμητική παράσταση; Να γράψετε δύο παραδείγματα.
    Απάντηση:
    Πολλές φορές για να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν μόνο αριθμούς και γι´ αυτό ονομάζονται αριθμητικές παραστάσεις.

    Για παράδειγμα…
    Συνέχεια ανάγνωσης ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ