ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΜΕΣΟΥ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ

 

Συντεταγμένες μέσου τμήματος
Έστω AB ένα ευθύγραμμο τμήμα με Α(\mathrm{x}_1,\mathrm{y}_1) και Β(\mathrm{x}_2,\mathrm{y}_2). Αν Μ(\mathrm{x_M},\mathrm{y_M}) είναι το μέσο του τμήματος AB, τότε ισχύει ότι:

    \[\mathrm{x_M}=\frac{\mathrm{x}_1+\mathrm{x}_2}{2} \quad \text{και}\quad \mathrm{y_M}=\frac{\mathrm{y}_1+\mathrm{y}_2}{2}\]

Συνέχεια ανάγνωσης ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΜΕΣΟΥ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΔΙΑΝΥΣΜΑΤΟΣ ΜΕ ΓΝΩΣΤΑ ΑΚΡΑ

Συντεταγμένες διανύσματος με γνωστά άκρα

Οι συντεταγμένες του διανύσματος \overrightarrow{AB} με αρχή το σημείο Α(\mathrm{x}_1,\mathrm{y}_1) και τέλος (πέρας) το σημείο Β(\mathrm{x}_2,\mathrm{y}_2) υπολογίζονται ως εξής:

    \[\overrightarrow{AB}=(\mathrm{x}_{\text{τέλους}}-\mathrm{x}_{\text{αρχής}}\,\, , \,\,\mathrm{y}_{\text{τέλους}}-\mathrm{y}_{\text{αρχής}})\]

δηλαδή:

    \[\overrightarrow{AB}=(\mathrm{x}_2-\mathrm{x}_1 \, \,, \mathrm{y}_2-\mathrm{y}_1)\]

Συνέχεια ανάγνωσης ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΔΙΑΝΥΣΜΑΤΟΣ ΜΕ ΓΝΩΣΤΑ ΑΚΡΑ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΕΝΤΡΟΥ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ

Κέντρο παραλληλογράμμου
Στις ασκήσεις με παραλληλόγραμμο πρέπει να λαμβάνουμε υπόψιν τις παρακάτω ιδιότιτες:

  • Σε κάθε παραλληλόγραμμο οι απέναντι πλευρές είναι ίσες και οι απέναντι γωνίες είναι ίσες.
  • Σε κάθε παραλληλόγραμμο οι διαγώνιοι διχοτομούνται.

Το σημείο τομής των διαγωνίων του λέγεται κέντρο του παραλληλογράμμου.

Συνέχεια ανάγνωσης ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΕΝΤΡΟΥ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΤΡΙΓΩΝΟΥ

  • Είναι γνωστό ότι σε κάθε τρίγωνο \overset{\triangle}{ΑB\Gamma} διάμεσος ονομάζουμε το ευθύγραμμο τμήμα το οποίο ενώνει μία κορυφή του τριγώνου με το μέσο της απέναντι πλευράς.
  • Είναι προφανές ότι σε κάθε τρίγωνο υπάρχουν ακριβώς τρεις διάμεσους: μία από κάθε κορυφή προς την αντίθετη πλευρά

.

Συνέχεια ανάγνωσης ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΤΡΙΓΩΝΟΥ

ΜΕΤΡΟ ΔΙΑΝΥΣΜΑΤΟΣ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ


Έστω μια συνάρτηση με συνεχή πρώτη παράγωγο και 1-1. Για τον υπολογισμό του ορισμένου ολοκληρώματος της αντίστροφης συνάρτησης της μορφής

    \[\int_{\alpha }^{\beta} f^{-1}(x)\, dx\]

όπου ο υπολογισμός της αντίστροφης είναι αδύνατος, ακολουθούμε τα παρακάτω βήματα:

  • θέτουμε u =f^{-1}(x)\Rightarrow   f(u) = x, οπότε f'(u)du = dx
  • Βρίσκουμε τα άκρα ολοκλήρωσης:

  • για x=\alpha έχουμε: f(u) = \alpha \Leftrightarrow f(u) = f(\gamma)\Leftrightarrow u = \gamma.
  • για x=\beta έχουμε: f(u) = \beta \Leftrightarrow f(u) = f(\delta)\Leftrightarrow u = \delta.
  •     \[\int_{\alpha }^{\beta} f^{-1}(x)\, dx =\int_{\gamma}^{ \delta} u \cdot f'(u)\, du\]

    Και συνεχίζουμε την επίλυση με τη μέθοδο της παραγοντικής ολοκλήρωσης

    Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΝΤΙΣΤΡΟΦΗΣ ΣΥΝΑΡΤΗΣΗΣ

    ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

    ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ
    Η απόσταση των σημείων A(\mathrm{x}_1,\mathrm{y}_1) και B(\mathrm{x}_2,\mathrm{y}_2) του Καρτεσιανού επιπέδου είναι ίση με:

        \[AB=\sqrt{{(\mathrm{x}_2-\mathrm{x}_1)}^2+{(\mathrm{y}_2-\mathrm{y}_1)}^2}\]

    Απόδειξη

    Η απόσταση δύο σημείων AB είνα ίση με το μέτρο του διανύσματος που ορίζουν.

    Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΔΥΟ ΣΗΜΕΙΩΝ

    ΟΡΙΖΟΥΣΑ ΔΙΑΝΥΣΜΑΤΩΝ – ΣΥΝΘΗΚΗ ΠΑΡΑΛΛΗΛΙΑΣ

    ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ


    Για να εξετάσουμε τρια σημεία οτι είναι συνευθειακά θα πρεπει να οριζουν δυο διανύσματα παράλληλα οπότε η ορίζουσα των συντεταγμένων τους να ειναι μηδεν

    Συνέχεια ανάγνωσης ΣΥΝΕΥΘΕΙΑΚΑ ΣΗΜΕΙΑ

    ΓΩΝΙΑ ΔΙΑΝΥΣΜΑΤΟΣ ΜΕ ΤΟΝ ΑΞΟΝΑ ΤΩΝ ΤΕΤΜΗΜΕΝΩΝ