ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

Στα ολοκληρώματα ρητής ή άρρητηςσυνάρτησης όπου η μεταβλητή x εμφανίζεται μόνο ως x^{2} αρκετές φορές χρειάζεται να κάνουμε την τριγωνομετρική αντικατάσταση του ημιτόνου ή της εφαπτομένης αξιοποιόντας την ταυτότητα \hm^{2}x+ \syn^{2}x =1.

Τριγωνομετρική αντικατάσταση του ημιτόνου


Για υπολογίσουμε ένα ολοκλήρωμα της μορφής

    \[\int_{\kappa}^{\lambda} f\Big( x, \sqrt{\beta^{2} -\alpha^{2}x^{2}}\Big)\, dx.\]

Χρησιμοποιούμε την τριγωνομετρική αντικατάσταση του ημιτόνου δηλαδή:

    \[\text{Θέτουμε } \quad x = \dfrac{\beta}{\alpha}\cdot \hm u \quad \text{με} \quad u \in \big[ -\dfrac{\pi}{2}, \dfrac{\pi}{2}\big].\]


Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ


Για την ολοκλήρώση τριγωνομετρικων συναρτήσεων της μορφής:

    \[\int_{\alpha}^{\beta} \hm^{\nu}x \cdot \syn^{\mu}x \,\, dx\]

διακρίνουμε τις παρακάτω περιπτώσεις:

  • Αν το \hm x είναι υψωμένο σε περιττή δύναμη, τότε θέτουμε u = \syn x.
  • Αν το \syn x είναι υψωμένο σε περιττή δύναμη, τότε θέτουμε u = \hm x.
  • Αν το \hm x και το \syn x είναι υψωμένο σε άρτια δύναμη, τότε χρησιμοποιούμε τους τύπους του αποτετραγωνισμού
    \syn^{2}x =\dfrac{1+\syn2x}{2} και \hm^{2}x =\dfrac{1-\syn2x}{2}.
  • Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ