ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΠΟΥ Ο ΒΑΘΜΟΣ ΤΟΥ ΑΡΙΘΜΗΤΗ ΕΙΝΑΙ ΜΙΡΚΟΤΕΡΟΣ ΑΠΟ ΤΟΝ ΒΑΘΜΟ ΤΟΥ ΠΑΡΟΝΟΜΑΣΤΗ

Στο ορισμένο ολοκλήρωμα ρητής συνάρτησης όπου ο βαθμός του πολυωνύμου του αριθμητή είναι μικρότερος απο τον βαθμό του πολυωνύμου του παρονομαστή προσπαθούμε να γράψουμε τον παρονομαστή ως γινόμενο πρωτοβάθμιων πολυωνύμων και στη συνέχεια την ρητη συνάρτηση ως άθροισμα κλασμάτων με παρονομαστή τον κάθε ένα απο τους παράγοντες που βρήκαμε.

    \[\int_{\alpha}^{\beta}\dfrac{P(x)}{Q(x)}dx =\]

    \[\int_{\alpha}^{\beta}\dfrac{P(x)}{(\alpha_{1}x+\beta_{1})\cdots(\alpha_{\nu}x+\beta_{\nu} )}dx =\]

    \[\int_{\alpha}^{\beta}\Big(\dfrac{A_{1}}{\alpha_{1}x+\beta_{1}}+\cdots +\dfrac{A_{\nu}}{\alpha_{\nu}x+\beta_{\nu}}\Big) dx =\]

    \[\dfrac{A_{1}}{\alpha_{1}}\Big[\ln |\alpha_{1}x+\beta_{1}|\Big]_{\alpha}^{\beta}+ \cdots + \dfrac{A_{\nu}}{\alpha_{\nu}}\Big[ \ln |\alpha_{\nu}x +\beta_{\nu}|\Big]_{\alpha}^{\beta}\]



Παράδειγμα

Να υπολογισθεί το παρακάτω ολοκλήρωμα ρητης συνάρτησης:

    \[\int_{0}^{1}\dfrac{5x-3}{x^{2}-2x-3}\, dx.\]

Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΡΗΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΠΟΥ Ο ΒΑΘΜΟΣ ΤΟΥ ΑΡΙΘΜΗΤΗ ΕΙΝΑΙ ΜΙΡΚΟΤΕΡΟΣ ΑΠΟ ΤΟΝ ΒΑΘΜΟ ΤΟΥ ΠΑΡΟΝΟΜΑΣΤΗ