ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΚΘΕΤΙΚΗ ΕΠΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ

Για τα ολοκληρώματα της μορφής

    \[\int_{\alpha}^{\beta} e^{\kappa x+\lambda}\hm(\mu x+\nu )dx \,\,\, \text{ή} \int_{\alpha}^{\beta} e^{\kappa x+\lambda}\syn(\mu x+\nu)dx\]

όπου \kappa,  \mu\in\rr^*μπορούν να υπολογιστούν με τη βοήθεια της παραγοντικής ολοκλήρωσης, γράφοντας είτε τον εκθετικό είτε το τριγωνομετρικό όρο ως παράγωγο μιας αρχικής του. Συγκεκριμένα:

    \[ e^{\kappa x+\lambda}=\bigg(\dfrac{ e^{\kappa x+\lambda}}{\kappa}\bigg)'\]

    \[ \hm(\mu x+\nu)=\bigg(-\dfrac{\syn(\mu x+\nu)}{\mu}\bigg)'\]

    \[ \syn(\mu x+\nu)=\bigg(\dfrac{\hm(\mu x+\nu)}{\mu}\bigg)' \]

Συνήθως σε ολοκληρώματα αυτής της μορφής εφαρμόζουμε την παραγοντική ολοκλήρωση περισσότερες απο μία φορές και εμφανίζεται ξανά το αρχικό ολοκλήρωμα I. Εξισώνουμε τότε το I με το τελικό αποτέλεσμα και λύνουμε ως προς I.

Συνέχεια ανάγνωσης ΠΑΡΑΓΟΝΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΚΘΕΤΙΚΗ ΕΠΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ