ΚΥΡΤΗ – ΚΟΙΛΗ ΣΥΝΑΡΤΗΣΗ

Έστω μια συνάρτηση f συνεχής σε ένα διάστημα \Delta και παραγωγίσιμη στο εσωτερικό του \Delta. Θα λέμε ότι:

  • Η συνάρτηση f στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο \Delta αν η f' είναι γνησίως αύξουσα στο εσωτερικό του \Delta.
  • Η συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο \Delta αν η f' είναι γνησίως φθίνουσα στο εσωτερικό του \Delta.
  • ΘΕΩΡΗΜΑ
    Έστω μια συνάρτηση συνεχής σε ένα διάστημα \Delta και δύο φορές παραγωγίσιμη στο εσωτερικό του \Delta.

  • Αν f''(x)>0 για κάθε εσωτερικό σημείο x του \Delta, τότε η f είναι κυρτή στο \Delta.
  • Αν f''(x)<0 για κάθε εσωτερικό σημείο x του \Delta, τότε η f είναι κοίλη στο \Delta.
  • Συνέχεια ανάγνωσης ΚΥΡΤΗ – ΚΟΙΛΗ ΣΥΝΑΡΤΗΣΗ

    ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

    Αν μια εξίσωση περιέχει μια πραγματική, παράμετρο \lambda \in \rr, τότε για να βρούμε το πλήθος των ριζών της εξίσωσης για τις διάφορες τιμές του \lambda \in \rr, εργαζόμαστε ως εξής:
    Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

    ΥΠΑΡΞΗ ΜΟΝΑΔΙΚΗΣ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΟΛΟ ΤΙΜΩΝ

    Στις ασκήσεις που αναζητάμε την ύπαρξη μοναδικής ρίζας μιας συνάρτησης, και δεν γνωρίζουμε συγκεκριμένο διάστημα στο οποίο θα μπορούσαμε να εφαρμόσουμε, κάποιο απο τα υπαρξιακά θεωρήματα Bolzano, Rolle τότε εργαζόμαστε ως εξής:
    Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ΜΟΝΑΔΙΚΗΣ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΟΛΟ ΤΙΜΩΝ

    ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

    Έστω οτι η συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [\alpha, \beta], τότε από το θεώρημα μέγιστης και ελάχιστης τιμής, η συνάρτηση f, παρουσιάζει ένα ελάχιστο m και ένα μέγιστο M.
    Τότε το σύνολο τιμών της συνάρτησης f, είναι το διάστημα [m,M]. Για να βρούμε το ελάχιστο και το μέγιστο της συνάρτησης f, εργαζόμαστε ως εξής:
    Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ