ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Θεώρημα Fermat
Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα \Delta.
Αν ισχύουν τα παρακάτω

  • η f παρουσιάζει τοπικό ή ολικό ακρότατο στο x_0,
  • το x_0 είναι εσωτερικό σημείο του \Delta,
  • η f είναι παραγωγίσιμη στο x_0,

τότε f'(x_0)=0.
Συνέχεια ανάγνωσης ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΟΤΗΤΕΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Για να αποδείξουμε μια ανισότητα της μορφής f(x)\geq g(x) με f, g παραγωγίσιμες συναρτησεις για καθε x\in\Delta εργαζόμαστε ως εξής:

  • Μεταφέρουμε όλους τους όρους στο ένα μέλος και η ανίσωση γίνεται f(x)-g(x)\geq0

Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΟΤΗΤΕΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Μια ανίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)\leq 0 ή f(x)\geq 0
  • Με τη μέθοδο των παραγώγων αποδεικνύουμε ότι η f είναι γνησίως μονότονη.
  • Βρίσκουμε με δοκιμές μία ρίζα \rho της εξίσωσης f(x)=0, οπότε η ανίσωση γίνεται f(x)\leq f(\rho) ή f(x)\geq f(\rho)
  • Εκμεταλλευόμαστε τη μονοτονία της f.
  • π.χ. αν

    Rendered by QuickLaTeX.com

    ή

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ