ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Παράδειγμα.1.
Αν για την συνάρτηση f, ισχύει, για κάθε x,  y \in (0,+\infty)

    \[f(x\cdot y) = f(x)+ f(y)\]

Να δείξετε ότι
i) Αν η f είναι συνεχής στο x_{0} =1, τότε είναι συνεχής στο (0, +\infty)
ii) Αν η f είναι συνεχής για κάθε \alpha \in (0,+\infty) και \alpha \neq 1
τότε η f είναι συνεχής σε όλο το διάστημα (0 , +\infty).
Συνέχεια ανάγνωσης ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

Παράδειγμα.
Αν για την συνάρτηση, f:\rr \to \rr, ισχύει ότι:

    \[x-2x^{2}\leq f(x) \leq 5x^{2} +x, \,\, x\in \rr,\]

Να αποδείξετε ότι η συνάρτηση f είναι συνεχής στο x_{0} =0.

Συνέχεια ανάγνωσης ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΝΙΣΟΤΗΤΑΣ

Παράδειγμα.1.
Αν για την συνεχή συνάρτηση f: \rr \to \rr, ισχύει ότι:

    \[x\cdot f(x) \leq x^{2}+4x+\hm x, \quad x \in \rr,\]

να βρεθεί η τιμή του f(0).

Συνέχεια ανάγνωσης ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΝΙΣΟΤΗΤΑΣ