ΙΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Για να αποδείξουμε ότι δύο συναρτήσεις f,g είναι ίσες αρκεί να δείξουμε ότι:

  • έχουν το ίδιο πεδίο ορισμού Α και,
  • για κάθε x στο πεδίο ορισμού τους έχουν τον ίδιο τύπο, δηλαδή f(x)=g(x) \quad \forall x \in A
  • Συνέχεια ανάγνωσης ΙΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

    ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

    Σημεία γραφικών παραστάσεων συναρτήσεων

  • Σημείο ανήκει σε C_{f}
  • Ένα σημείο M(x_{0}, y_{0}) ανήκει στη γραφική παράσταση μιας συνάρτησης f αν και μόνο αν ισχύει: f(x_{0})=y_{0}

    Σημείο τομής της γραφικης παράστασης της συνάρτησης f με τους άξονες ή με άλλες συναρτήσεις.

    Για να βρούμε:

  • Το σημείο τομής με τον άξονα x'x.
  • Θέτουμε y=0 και λύνουμε την εξίσωση f(x)=0. Οι λύσεις της εξίσωσης αυτής θα μας δώσει τα σημεία τομής.

  • Το σημείο τομής με τον άξονα y'y.
  • Θέτουμε x=0 και λύνουμε την εξίσωση y=f(0). Το σημείο τομής με τον άξονα y'y είναι η λύση της εξίσωσης και είναι το A(0,f(0)). Εφόσον υπάρχει τέτοιο σημείο αυτό είναι και μοναδικό.

  • Τα σημεία τομής δύο συναρτήσεων f(x) και g(x).
  • Συνέχεια ανάγνωσης ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

    ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται άρτια όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας άρτιας συνάρτησης είναι συμμετρική ως προς τον άξονα y'y.

    Μια συνάρτηση f: A \rightarrow \mathbb{R} λέγεται περιττή όταν:

  • Για κάθε x \in A είναι και -x \in A
  • Ισχύει f(-x)=-f(x) για κάθε x \in A
  • Η γραφική παράσταση μιας περιττής συνάρτησης είναι συμμετρική ως προς την αρχή των αξόνων.
    Συνέχεια ανάγνωσης ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ

    ΣΥΝΟΛΟ ΤΙΜΩΝ

    Για να βρούμε το σύνολο τιμών μιας συνάρτησης f εργαζόμαστε ως εξής:

  • Βρίσκουμε το πεδίο ορισμού της f.
  • Θεωρούμε την εξίσωση y=f(x) και τη λύνουμε ως προς x θέτοντας όπου χρειάζεται περιορισμούς για το y.
  • Απαιτούμε η λύση x που βρήκαμε να ανήκει στο πεδίο ορισμού της f.
  • Συναληθεύουμε τους περιορισμούς που έχουν προκύψει για το y και βρίσκουμε έτσι το σύνολο τιμών της f.
  • Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ

    ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΑΣΚΗΣΕΙΣ

    Παράδειγμα.1
    Να βρείτε για ποιές τιμές του \lambda \in \mathbb{R} το πεδίο ορισμού της συνάρτησης

        \[f(x)=\ln[(\lambda-2)x^2+(\lambda+1)x+\lambda +1]\]

    είναι το \mathbb{R}.
    Συνέχεια ανάγνωσης ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΑΣΚΗΣΕΙΣ

    ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

    Όταν γνωρίζουμε μόνο τον τύπο μιας συνάρτησης f, τότε το πεδίο ορισμού της είναι το ευρύτερο υποσύνολο του \mathbb{R} στο οποίο ο τύπος της f(x) έχει νόημα πραγματικού αριθμού.
    Για τις ασκήσεις, γενικά το πεδίο ορισμού μιας συνάρτησης θεωρούμε όλο το \mathbb{R} εκτός απο τις παρακάτω περιπτώσεις που πρέπει να πάρουμε τους σχετικούς περιορισμούς.

  • f(x)=\dfrac{P(x)}{Q(x)} τότε θα πρέπει Q(x) \neq 0
  • f(x)=\sqrt[\nu]{P(x)}, \nu \in \mathbb{N}^*- \{1\} τότε θα πρέπει P(x) \geq 0
  • f(x)=ln(P(x)) τότε θα πρέπει P(x)>0
  • f(x)=\epsilon\phi(P(x)) τότε θα πρέπει P(x) \neq \kappa\pi+\dfrac{\pi}{2}, \kappa \in \mathbb{Z}
  • f(x)=\sigma\phi(P(x)) τότε θα πρέπει P(x) \neq \kappa\pi, \kappa \in \mathbb{Z}
  • f(x)=(P(x))^{Q(x)} τότε θα πρέπει P(x)>0
  • Συνέχεια ανάγνωσης ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ