ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

Αν μια συνάρτηση f είναι γνησίως μονότονη, τότε η C_{f} τέμνει τον άξονα x'x το πολύ μία φορά. Αυτό σημαίνει ότι η εξίσωση f(x)=0 έχει το πολύ μία ρίζα.
Μια εξίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)=0
  • Βρίσκουμε με δοκιμές μία ρίζα της εξίσωσης f(x)=0.
  • Αποδεικνύουμε ότι η f είναι γνησίως μονότονη, οπότε η εξίσωση

        \[f(x)=0\]

    έχει το πολύ μία ρίζα. Έτσι η ρίζα που βρήκαμε προηγουμένως είναι μοναδική.

  • Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ